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EXECUTIVE SUMMARY 
 

Metropolitan areas suffer from frequent road traffic congestion not only during peak hours 

but also during off-peak periods. Different machine learning methods have been employed in 

travel time prediction; however, such machine learning methods practically face the problem of 

overfitting. Tree based ensembles have been applied in various prediction field, and such 

approaches usually produce high prediction accuracy by aggregating and averaging individual 

decision trees. The inherent advantages of these approaches are that they can get better 

prediction results while also having a good bias-variance trade off which can help to avoid the 

overfitting.  However, the reality is that the application of tree-based integration algorithms in 

traffic prediction is still limited. In order to improve the accuracy and the interpretability of the 

model, random forest (RF) is used to analyze and model the travel time on freeways.  

As the traffic conditions often greatly change, the prediction results are often unsatisfactory. In 

order to improve the accuracy of short-term travel time prediction in the freeway network, a 

practically feasible and computationally efficient RF prediction method for real-world freeways 

by using probe traffic data was generated. In addition, the variables’ relative importance can also 

be ranked, which provides an investigation platform to gain a better understanding of how 

different contributing factors might affect travel time on freeways. This research develops an RF 

method to predict the freeway travel time by using the probe vehicle-based traffic data and 

weather data. Detailed information about the input variables and data pre-processing are 

presented. To measure the effectiveness of proposed travel time prediction algorithms, the mean 

absolute percentage errors (MAPE) are computed for different observation segments combined 

with different prediction horizon ranging from 15 to 60 minutes. 
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The parameters of the RF model are estimated by using the training sample set. After the 

parameter tuning process is completed, the proposed RF model is developed. The features’ 

relative importance showes that the variables travel time 15 minutes before and time of day 

(TOD) contribute the most to the predicted travel time result. The model performance is also 

evaluated and compared against extreme gradient boosting method, and the results indicates that 

the RF always produces more accurate travel time prediction.
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CHAPTER 1:  INTRODUCTION 

1.1. Problem Statement and Motivation 

Nowadays, travel time prediction plays a significant role as it can greatly help route 

planning and also the development of countermeasures to reduce traffic congestion. Metropolitan 

areas are adversely affected by frequent road traffic congestion not only in peak hours but also in 

off-peak periods. Therefore, the capability to forecast traffic conditions, particularly travel times, 

is of utmost importance in traffic management applications aimed at relieving negative social, 

environmental and economic impacts for people. The definition of travel time is the total time for 

a vehicle to travel from one point to another over a specified route (Zhu et al., 2009). Recently, 

the need for travel time prediction has become indispensable due to the increasing congestion in 

the roadway network. However, travel time prediction is highly complex as it is affected by a 

wide variety of factors. Metropolitan areas are suffering frequent road traffic congestion not only 

in peak hours but also in off-peak time periods. Accurate and reliable travel time prediction in 

freeway networks is a critical component that will be helpful to all modes of transportation in all 

urban, suburban and rural areas. It is widely accepted that considerable accuracy and reliability 

of travel time prediction is highly desired for both travelers and transportation planners. 

Therefore, the capability to forecast dynamically changing traffic conditions, particularly travel 

times, is of utmost importance in a wide range of traffic management applications aimed at 

relieving its negative impact on society, environment and economy. Accurate travel time 

prediction can greatly help enhance the performance of the traffic management systems (TMS), 

in which travelers are given the opportunities to react to the traffic proactively (Oh et.al., 2015).  

The acquisition and popularization of big data in the field of transportation have enabled the 

collection and diffusion of real-time traffic information. Different machine learning approaches 
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have been employed by different researchers, and the results indicated that such approaches can 

give better performances than traditional models. However, such machine learning methods are 

practically faced with an overfitting problem that is difficult to overcome. Especially, when the 

traffic conditions greatly change, the prediction results are often unsatisfactory. In addition, the 

RF method has a very good Bias-Variance trade-off which can help avoid the overfitting 

problem. This research develops an RF method to predict the freeway travel time by using the 

probe vehicle-based traffic data, and therefore helps to gain a better understanding of how 

different contributing factors might affect travel time on freeways. In this study, as the second 

ensemble tree based machine learning method, eXtreme Gradient Boosting (XGBoost) is also 

deployed, which is an algorithm that has ensemble of decision trees and is robust to outliers. 

XGBoost algorithm is believed to have a good performance on time series predictions 

(Kankanamge et al., 2019). To validate the effectiveness of two travel time prediction methods, 

the proposed approaches are tested using a freeway corridor in Charlotte, North Carolina using 

the probe vehicle-based traffic data. A comparison will be made, the proposed method will 

achieve a better prediction performance not only in accuracy but also in stability. 

 The proposed work in this research is intended to fulfill the following objectives: 

1. To select the most appropriate travel time prediction variables that could be used to 

accurately predict results; 

2. To systematically analyze the travel time with the consideration of time of day, day of 

week, month and weather. The potential significant impact factors are analyzed and 

ranked; 

https://link.zhihu.com/?target=http%3A//scott.fortmann-roe.com/docs/BiasVariance.html
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3. To select a real-world freeway corridor to examine the developed prediction models so 

that the gaps between the theoretical research and the application of the developed travel 

time prediction model can be bridged. 

1.2. Objectives 

 This research is intended to develop and compare advanced machine learning-based 

approaches (e.g., RF and XGBoost method) are employed to predict the freeway travel time. 

The expected contributions from this research are summarized as follows:  

1. Ability to select appropriate machine learning methods to predict travel time and identify 

the most impact traffic variables; 

2. Ability to understand the travel time of selected segments with the consideration of time 

of day, day of week, month and weather. 

1.3. Report Overview 

 The research will be structured as follows.  

In Chapter 1, the background and motivation of the travel time prediction has been discussed, 

followed by the description of study objectives and expected contributions. 

Chapter 2 presents a comprehensive review of the current state-of-the-art and state-of-the-

practice on short-term travel time prediction. Research on more reliable short-term travel time 

forecasting has attracted numerous researchers from transportation engineers to data scientists in 

the last several decades. The machine learning (data-based parametric models and non-

parametric models) traffic prediction methods will be introduced. 

Chapter 3 presents the RITIS data set that is used to analyze travel time prediction, including the 

travel time data and historical weather data utilized in this study. The detailed information about 
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the raw travel time data sources are described first, followed by the discussions about weather 

data collection. The data processing steps are also described in detail in this chapter.  

Chapter 4 discusses the travel time prediction methodology based on the data described in 

Chapter 3. The Random Forests based travel time prediction model will be developed. The 

detailed process will be described such as the data structure configuration, parameter 

determination, model training, and model validation. 

Chapter 5 presents the validation of the proposed machine learning models based on the data 

described in Chapter 3. For the machine learning prediction model, the data training step will be 

described to determine the parameters in the model structure. The potential parameters will 

include but are not limited to: time of day, day of week, month of year, weather conditions, 

segment characteristics, etc. The evaluation of the proposed machine learning models based on 

the data described in previous Chapters. The MAPE will be used to measure the prediction error. 

Potential impacts of the introduction of new methodology on the efficiency will be discussed. 

Chapter 6 concludes the report with a summary of the developed prediction models, solution 

approaches, and research results. Suggestions for future research will be also provided. 
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CHAPTER 2: LITERATURE REVIEW  

2.1. Introduction 

This chapter provides a comprehensive review of various aspects related to travel time 

studies and travel time prediction methodologies. This should give a clear picture of existing 

current efforts toward the modeling of travel time prediction. 

The following sections are organized as follows. Section 2.2 presents the definitions of travel 

time and classification methods. Section 2.3 gives a comprehensive review of existing methods 

of travel time prediction, which include statistical methods and machine learning methods. 

Furthermore, the section shows the common research and methods that have been applied to 

predict travel time. Finally, section 2.4 concludes this chapter with a summary.   

2.2. Travel Time Prediction 

2.2.1. Definitions of Travel Time  

Travel time is defined as the total time for a vehicle to travel from one point to another 

over a specified route (Zhu et al., 2009).  

2.2.2. Classification Approach 

Transportation researchers and data scientists have developed various techniques in the 

past three decades to provide more reliable future travel time estimation methods (Oh et al., 

2015). Generally speaking, such techniques can be classified into three groups: naive methods, 

traffic theory-based methods and data-driven methods. As the name indicates, the naive 

prediction models are very simple methods, which typically do not involve the estimation of 

model parameters. As the model assumptions are usually restrictive, they are not actually 

fulfilled in many situations (Wunderlich et al., 2000). As one of the traffic theorybased methods, 

traffic flow simulation and user-optimal dynamic traffic assignment have been widely used in 
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freeway travel time prediction. Examples include Papageorgiou et al. (2010) and Dion et al. 

(2004). In data-based traffic time prediction models, the function that relates traffic factors with 

the prediction result (dependent variable) is not obtained from predetermined traffic theory, as 

the relationships of variables come from the sample data itself by using statistical data mining 

methods. This approach greatly expands the pool of researchers who can participate in travel 

time prediction because they no longer have to become experts in traffic theory. However, such 

data-based methods usually need a lot of data, which is not always available. The data-based 

models are strongly subjected to data availability and accessibility (Van Lint, 2006). 

Travel time prediction can be categorized from different perspectives, and the most popular 

classification method is to categorize them according to its prognosis horizon as short, medium, 

and long-term (Oh et al., 2018). Van Lint (2004) defines the short-term travel time prediction at 

0-60 minutes intervals. It was found that making the appropriate time horizon in travel time 

prediction plays the most significant role in the travel time prediction applications (Shen, 2008). 

And the second important perspective is the road network category, including either arterial 

roads or freeways. It is more complicated to make prediction on the urban signalized arterial 

roads due to the signal cycles and intersections (Oh et al., 2018). In short term traffic flow 

prediction, researchers consider the flows, speeds, densities and travel time, which are important 

components of the application of ITS (Liu et al., 2017).  

2.3. Travel Time Prediction Approach 

Thanks to the integration of big data and transportation management, different kinds of 

approaches have been studied and applied in this area. The approaches can be divided into two 

general groups: statistical methods and machine learning methods. In statistical models, such as 

the linear regression and time series, the autoregressive integrated moving average (ARIMA) 
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model has been widely applied to predict travel times based on the historical data. Machine 

learning methods are considered more effective, accurate and feasible. Different machine 

approaches (such as neural network, ensemble learning and support vector machines) have been 

employed by different researchers, and the results indicate that such approaches can give better 

performances than traditional statistical models (Mori et al., 2015). 

Research on more reliable short-term travel time forecasting has attracted numerous researchers 

from transportation engineers to data scientists in the last several decades. The machine learning 

(data-based) traffic prediction methods can be divided into two major categories: parametric 

models and non-parametric models (Van, 2004). Parametric models are always model-based 

methods, where all of the parameters can be estimated with empirical data and the model 

structure is predetermined based on certain theoretical assumptions. Linear regression is the most 

typical parametric model, where the dependent variable is a linear function of the explanatory 

(independent) input variables. The input variables are typically traffic observations in several 

past time intervals. Bayesian net is the second type of the parametric models, where the 

explanatory variables are assumed to be conditionally independent, given the target variable. The 

third type of the parametric models is time series models, which is a series of data points indexed 

in time order. Time series forecasting involves the use of a model to predict future values based 

on previously observed values. Autoregressive integrated moving average (ARIMA) model is the 

most widely used for travel time prediction. The first application of ARIMA in the field of traffic 

analysis dates back to 1979 (Ahmed & Cook, 1979). For parameter-based approaches, the 

integrity of real-time data is also a critical factor that determines the prediction accuracy, since 

many model-based systems deal with feeding data in real-time for online services. 
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In the non-parametric models, both the structure of the model and the parameters are not 

predetermined. However, the term “non-parametric” does not mean that there are no parameters 

in the models to be estimated. Furthermore, the number and typology of the parameters are 

unknown a priori and sometimes uncountable. Due to the rapid development of data science, 

non-parametric estimation methodologies are being quickly updated. The non-parametric models 

tend to be more efficient and therefore the more advanced model structure. It is mentioned that 

the efficiency of data-driven approaches, in general, is poor and not fit for real-time applications 

(Oh et al., 2015). One of the most popular in the literature of travel time prediction is the 

artificial neural networks (ANN). Due to their ability to capture complex relationships in large 

data sets, ANN methods have been widely used in travel time forecasting (Dharia & Adeli, 

2003). As the typical non-parametric models, ANN can be developed without being given a 

specific form of the function. Furthermore, the restrictions on the multicollinearity of the 

explanatory variables can be partially overcome. Different types of neural networks have been 

applied to travel time forecasting, such as the regular multilayer feedforward neural networks 

(Yildirimoglu & Geroliminis, 2013) and spectral basis neural networks (Park & Rilett, 1999). 

The input variables selection is different which depends on the data availability and the model 

training process, and different types of neural networks can be carried out by different variations 

of the backward algorithm. Support vector machine (SVM) methods are another choice for travel 

time prediction. This advanced algorithm consists of decision function, the application of the 

kernel functions and the sparsity of solutions. The SVM model is good for travel time prediction 

based on historical travel time data. Some researchers (Yildirimoglu & Geroliminis, 2013; Wu et 

al, 2004) used SVM methods to estimate travel time. In the calculation process, the algorithm 

maps the input data into a higher dimensional space by the kernel function. The process stops 



 

9 

 

after finding the flattest linear function which relates to the transferred input vectors (i.e., when 

the target variable with an error smaller than a predefined threshold). This linear function can be 

mapped again into the initial space and get the final nonlinear function which is used for travel 

time prediction. Both the ANN and SVM models tend to be overfitting due to the complicated 

structure and the large number of parameters that need to be calibrated, which is a serious 

problem commonly existed in the non-parameter machine learning algorithm.  

Another popular non-parametric approach in the travel time prediction applications is the local 

regression approach. Local linear regression can be used to optimally balance the use of 

historical and real time data (Rupnik et al., 2015), which is able to yield accurate prediction 

results. In the local regression algorithm, a set of historical data which have similar 

characteristics to the current situation will be selected by the algorithm. The prediction results 

base themselves on generating a model constructed by the chosen data set. The types of the local 

regression models depend on the techniques used to select the set of similar historical points and 

also depend on the methodology chosen to fit the model. 

Some semi-parametric models have been developed in traffic time prediction, which are a 

combination of parametric and non-parametric methods. The main idea of the semi-parametric 

method is to loosen some of the assumptions of the parametric model to obtain a more flexible 

structure (Ruppert et al., 2003). In the case of application, semi-parametric models are presented 

in the form of varying coefficient regression models. Travel time can be calculated by a linear 

function of the naive historical and instantaneous predictors. Furthermore, the parameters vary 

depending on the departure time interval and prediction horizon (Schmitt & Jula, 2007). 

With the wide applications of machine learning algorithm in the field of travel time prediction, 

different approaches have been deployed in different area with different types of data source. 
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The methodologies have been used by researchers include, but are not limited to, the following: 

SVM, neural network (e.g., State-and-space neural network, long short-term memory neural 

network), Nearest Neighbor (e.g., k-nearest neighbor), and ensemble learning (e.g., RF and 

gradient boosting), etc. Some research details are listed as following and Table 2.1 provides a 

summary of the studies reviewed in chronological order. 

2.3.1. Support Vector Regression Approach 

2.3.1.1. Wu et al.’s research work 

Support Vector Regression (SVR) was applied by Wu et al. (2004) for travel-time 

prediction and its results were compared to other travel time prediction methods as baseline 

using real highway traffic data. As SVR has greater generalization ability and guarantee global 

minima for given training data, it was believed that SVR has a better performance than time 

series method. The results showed that the SVR predictor can significantly reduce both relative 

mean errors and root-mean-squared errors of predicted travel times. This study demonstrated the 

feasibility of applying SVR in travel time prediction and proved that SVR is applicable for traffic 

data analysis. 

2.3.2. Nearest Neighbors Approach 

2.3.2.1. Myung et al.’s research work 

Myung et al. (2011) proposed a model to predict travel times on the basis of the k nearest 

neighbor (KNN) method using data provided by the vehicle detector system and the automatic 

toll collection system. By combining these two sets of data, the model minimized the limitations 

of each dataset and enhanced the prediction’s accuracy. The authors compared the prediction 

results of the proposed model with the predictions of other models by using actual data. The 

comparison results showed that the proposed model predicts travel times much more accurately.  
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2.3.2.2. Yu et al.’s research work 

Yu et al. (2017) combined random forest model and K-NN model in their study to predict 

bus travel time. The proposed combined-model was compared with linear regression, KNN, 

SVM and random forest. The results showed the proposed model achieved highest accuracy level 

and can be applied to real-time prediction.  

2.3.2.3. Moonam et al.’s research work 

Moonam et al. (2019) conducted a study to predict the expected travel time based on the 

experienced travel time using the data mining techniques such as k-nearest neighbor (k-NN), 

least squares regression boosting (LSBoost) and Kalman filter (KF) methods. The authors 

compared the performances of each methods from both link and corridor perspectives and 

concluded that the KF method offers superior prediction accuracy in a link-based model. 

2.3.3. Neural Network Approach 

2.3.3.1. Park and Rilett’s research work 

Park and Rilett (1999) proposed a BP neural network model to predict freeway link travel 

time. The freeway link travel time collected on freeway of Houston, Texas, by the automatic 

vehicle identification (AVI) system was used as the validation database. The proposed model 

could provide acceptable prediction results with the MAPE range being from 7.4% to 18%. 

2.3.3.2. Van Lint et al.’s research work 

Van lint et al. (2002) presented an approach to predict freeway travel time based on state-

space neural network. The data from freeway operations simulation (FOSIM) 4.1 was used to 

train and test the travel time prediction model. The authors also eliminated the insignificant 

parameters in the model and made it more effective without loss of predictive performance. 
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2.3.3.3. Wisitpongphan et al.’s research work 

Wisitpongphan et al. (2012) proposed a BP neural network model to predict freeway link 

travel time. The one-month vehicle trajectories data of 297 probes vehicles via GPS database in 

Thailand were used as the validation database. The prediction results of the proposed model can 

accurately approximate the travel time with the mean squared error (MSE) less than 3%. 

2.3.3.4. Zheng and Van Zuylen’s research work 

Zheng and Van Zuylen (2013) conducted a study using the probe vehicle data to estimate 

complete link travel times. Based on the information collected by probe vehicles, a three-layer 

neural network model was proposed by the authors to estimate complete link travel time for 

individual probe vehicle traversing the link. The estimation result of this model was then 

compared with an analytical estimation model. The performance of these two models was 

evaluated with data derived from VISSIM simulation model. The final results suggested that the 

Artificial Neural Network model performs better. 

2.3.3.5. Duan et al.’s research work 

Duan et al. (2016) employed a LSTM neural network model to predict freeway travel time. 

The authors constructed 66 series LSTM neural networks by using travel time data along 66 

links of the highways in England. The authors discussed the predictions of multi-step ahead 

travel time and found 1-step ahead travel time prediction can provide best result.  

2.3.3.6. Liu et al.’s research work 

Liu et al. (2017) proposed a LSTM deep neural network model using 16 settings of hyper-

parameters to predict the travel time on the interstate highway in California, US. The results of 

proposed model were compared with the results of other regression models and ARIMA model. 

The comparison results showed that the performance of the LSTM neural network model was the 
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best. 

2.3.3.7. Wang et al.’s research work 

Wang et al. (2018) presented a novel machine learning method to predict the vehicle travel 

time based on floating-car data. The authors adapted different machine learning models to solve 

the regression problem. Furthermore, the authors evaluated the solution offline with millions of 

historical vehicle travel data and the results showed that our proposed deep learning algorithm 

significantly outperforms the state-of-the-art algorithms. 

2.3.4. Ensemble Learning Approach 

2.3.4.1. Hamner et al.’s research work 

Hamner et al. (2011) applied a context-dependent Random Forest (RF) method to predict 

travel-time based on GPS data of the cars on the road in a simulation framework. The RMSE of 

the model was less than 7.5%.  

2.3.4.2. Zhang and Haghani’s research work 

Zhang and Haghani (2015) employed a gradient boosting regression tree method to analyze 

and predict freeway travel time to improve the prediction accuracy. The authors used travel time 

data along freeway sections in Maryland and discussed the effects of different parameters on the 

proposed model and the correlations of input and output variables. The prediction results showed 

the proposed model can provide considerable advantages in freeway travel time prediction. 

2.3.4.3. Li and Bai’s research work 

Li and Bai (2016) employed a gradient boosting regression tree method to analyze and 

predict travel time freight vehicles. The authors used travel time data and vehicle trajectory data 

in Ningbo, China. Bayesian optimization was used for model fitting in this study. The prediction 

results showed the proposed model can be feasible in the real-world. 
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2.3.4.4. Gupta et al.’s research work 

Gupta et al. (2018) employed random forest and gradient boosting models to predict taxi 

travel time in Porto. The vehicle trajectory data was used as the database and it was found that 

gradient boosting model provided better prediction results than random forest model. 
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Table 2.1 Summary of Travel Time Prediction Using Machine Learning Approaches 

Year Author Country/City 
Roadway 

Category 
Data Source 

Method Category Data 

Type 
Prediction method 

2000  
Wunderlich et 

al. 
N/A N/A 

Simulated data 

from 

INTEGRATION 

Navie model 

Travel time Exponential filtering 

2002 Dion et al. Virginia, US N/A 

Simulated data 

from 

INTEGRATION 

Traffic theory-base model 

Travel time Delay models 

2002 Van Lint et al. N/A Freeway 
Simulated data 

from FOSIM  

Non-parametric Travel time, travel 

speed 

State-Space Neural 

Network 

2005 Wu et al. Taiwan Highway Loop detector Non-parametric Travel speed SVR 

2007 
Schmitt and 

Jula 
California, US Urban road Loop detector 

Navie model 
Travel time Switch model 

2008 Zou et al. Maryland, US Highway Roadside detector 
Hybird non-parametric 

Travel time 
Combined Clustering 

Neural Networks 

2009 Li et al. Atlanta, US N/A 
simulated data 

from VISSIM 

 

Hybird non-parametric 

Travel time, travel 

speed 

Combined Boosting and 

Neural Network 

2010 
Papageorgiou 

et al. 
N/A N/A 

simulated data 

from MATANET 

Traffic theory-base model 
Travel time Macroscopic Simulation 

2010 Hamner et al. N/A N/A GPS Non-parametric Travel speed RF 

2011 Myung et al. Korea N/A ATC system Non-parametric Travel time KNN 

2012 
Wisitpongpha

n 

Bangkok, 

Thailand 
Highway GPS 

Non-parametric 
Travel time BP Neural Network 

2013  

Yildirimoglu 

& 

Geroliminis’s 

California, US Freeway Loop detector 

 

Hybird non-parametric Travel time 

Combined Gaussian 

Mixture, PCA, and 

Clustering 

2015 
Zhang and 

Haghani 
Maryland, US 

Interstate 

highway 
INRIX 

Non-parametric 
Travel time Gradient boosting 

2015 Joao et al. Porto, Portugal Urban road STCP system 

 

Hybird non-parametric Travel time 

Combined RF, Projection 

Pursuit Regression and 

SVM 

2016 Duan et al. England Highway 
Cameras, GPS and 

loop detectors 

Non-parametric 
Travel time LSTM Neural Network 

2016 Li and Bai Ningbo, China N/A N/A 
Non-parametric Truck trajectory, travel 

time, travel speed 
Gradient boosting 

2017 Liu et al. California, US 
Interstate 

highway 
PeMS 

Non-parametric 
Travel time LSTM Neural Network 
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Year Author Country/City 
Roadway 

Category 
Data Source 

Method Category Data 

Type 
Prediction method 

2017 Fan et al. Taiwan Highway Electric toll 
Non-parametric Travel time, vehicle 

information 
RF method 

2017 Yu et al. 
Shenyang, 

China 
bus route AVL system 

Non-parametric 
Bus travel time RF and KNN 

2018 Wang et al. Beijing, China Urban road Floating Car Data 
Non-parametric Taxi ravel time, vehicle 

trajectory data 
LSTM Neural Network 

2018 Wei et al. China Urban road 
Vehicle passage 

records  

Non-parametric 
Travel time LSTM Neural Network 

2018 Wang et al. 
Beijing and 

Chengdu, China 
Urban road GPS 

Non-parametric 
Vehicle trajectory data LSTM Neural Network 

2018 Gupta et al. Porto, Portugal Urban road GPS Non-parametric Taxi travel speed RF and gradient boosting 

2019 Moonam et al. 
Madison, 

Wisconsin, US 
Freeway Bluetooth detector 

Non-parametric 
Travel speed KNN, KF 

2019 Kumar et al.  Chennai, India Urban road GPS Non-parametric Travel time KNN 

2019 Cristobal et al. 
Gran Canaria, 

Spain 
Urban road 

Public transport 

networkl 

Non-parametric 
Travel time 

K-Medoid Clustering 

Technique 

2020 
Kwak & 

Geroliminis 
California, US Freeway  PeMS 

Parametric  
Travel time Dynamic linear model 

2020 Fu et al. 
Beijing, Suzhou, 

Shenyang,China 
Urban road 

Ride-hailing 

platform 

Non-parametric 
Travel time Graph attention network 

2021 
Chiabaut & 

Faitout 
Lyon, French Highway Loop detector 

Non-parametric 
Travel time PCA and Clustering 
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2.4. Summary 

In summary, with the wide applications of big data in the field of transportation, different 

machine learning approaches have been deployed in the travel time prediction area. The 

methodologies include, but are not limited to, the following: SVM regression, neural network 

approaches (e.g. state-and-space neural network, long short-term memory neural network), 

nearest neighbor (e.g. k-nearest neighbor) and ensemble learning (e.g. RF and gradient boosting), 

etc. Table 2.1 provides a summary of the studies reviewed in chronological order. A 

comprehensive review and synthesis of the current and historical research related to ravel time 

prediction and machine learning-based travel time prediction methodologies have been discussed 

and presented in the preceding sections. This is intended to provide a solid reference and 

assistance in analyzing travel time and developing travel time prediction models for future tasks. 
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CHAPTER 3: DATA DESCRIPTION AND PROCESSING 

3.1. Introduction 

This chapter provides the basic information needed for travel time prediction, including the 

travel time data and historical weather data utilized in this study. The following sections are 

organized as follows. Section 3.2 presents detailed information about the raw travel time data 

source, followed by the discussions about weather data collection in section 3.3. Section 3.4 

described details of data processing. Finally, section 3.5 concludes this chapter with a summary. 

3.2. Travel Time Data Collection 

In this study, the travel time dataset is gathered from the Regional Integrated Transportation 

Information System (RITIS). RITIS is an advanced traffic system which includes the segment 

analysis, probe data analytics, and signal analytics. I-485 is one of the most heavily traveled 

interstate freeways in the City of Charlotte which loops encircling the city. A series of segments 

in the southern loop are selected for the case study. In order to achieve an acceptable accuracy of 

prediction, the model has to be well-established with large historical data that need to be secured 

and typically contain at least one-year’s data (Torday, 2010). In this study, the dataset is 

collected from 01/01/2019-12/31/2019 and the time interval is 15 minutes, which have 

uninterrupted coverage in the RITIS data with 24 hours per day and 365 days a year. The 

selected study section starts from the interchange with I-77 (Exit 67) and ends at the interchange 

with US-74 (Exit 51). Figure 3.1 shows the study road segments and 3 traffic message record 

sensors (A, B, C) that were selected for the model validation. There are 37 miles of roadways 

and 32 traffic message channel code segments in the clockwise and counterclockwise directions. 
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Figure 3.1 Selected Road Segment on Southern 485 

In this study, the raw weather data are collected at locations that are close to the Charlotte 

Douglas International airport, which is not far from the selected roadway segments. The raw 

weather data include weather information such as temperature, dew point, humidity, pressure, 

visibility, wind direction, wind speed, gust speed, precipitation, and conditions.  Table 3.1 shows 

a sample of raw weather data.  
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Table 3.1 Sample Raw Weather Data 

Date Time (EDT) Conditions 

Saturday, Oct 5th, 2019 7:55 AM Rain 

Saturday, Oct 5th, 2019 8:55 AM Rain 

Saturday, Oct 5th, 2019 9:55 AM Light Rain 

Saturday, Oct 5th, 2019 10:55 AM Light Rain 

Saturday, Oct 5th, 2019 11:55 AM Light Rain 

Saturday, Oct 5th, 2019 12:55 AM Light Rain 

Saturday, Oct 5th, 2019 13:55 PM Light Rain 

 

It was found that the travel time reliability is sensitive to the weather condition and 

severe weather (Zhao & Chien, 2012). The weather can greatly affect the travel time and speed, 

which are two important traffic flow parameters of transportation, resulting in deterioration of a 

traffic system’s performance (Koetse & Rietveld, 2007). Since the weather data were recorded 

on a per hour basis, the discrepancy in the time intervals was treated by developing and using a 

mapping methodology to combine the traffic data with the weather data. The weather conditions 

were originally classified into 30 detailed weather conditions. In order to improve the computing 

power of the model, the weather conditions are further categorized into three groups (normal, 

rain, and snow/fog/ice) in this study. Table 3.2 presents the detailed classification of the newly 

grouped weather conditions.  
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Table 3.2 Classification of the Weather Conditions 

Original Weather Condition Weather Category in study 

Haze 
Snow/fog/ice 

Fog 

Smoke 

Patches of Fog 

Mist 

Shallow Fog 

Light Freezing R 

Light Ice Pellet 

Light Freezing D 

Light Freezing F 

Ice Pellets 

Light Snow 

Snow 

Heavy Snow 

Clear 
Normal 

Partly Cloudy 

Mostly Cloudy 

Scattered Clouds 

Overcast 

Unknown 

Squalls 

Light Rain 
Rain 

Rain 

Heavy Rain 

Light Drizzle 

Heavy Thunderstorm 

Thunderstorms an 

Light Thunderstorm 

Thunderstorm 

Drizzle 

 

3.3.   Feature Selection and Pre-Processing Steps 

In this study, the dataset is collected from the southern part of the I-485 freeway, which is 

divided into 32 sections by the recorded sensor segment. The traffic information on each 

segment (from sensor to sensor) contains the subject segment and adjacent segment travel times, 



 

22 

 

Day of Time (DOW), Time of Day (TOD), segment length, and space mean speed and other 

traffic information. The missing data rate of the sample dataset in this study is less than 0.5% 

(i.e., 4246 out of 981,083), and the missing values are replaced with the mean of its closest 

surrounding values. A well-defined preprocessing capability that corrects various types of data 

errors including missing data is mandatory for a reliable travel time prediction system with 

acceptable accuracy and efficiency (Oh et al.,2018). In this study, prediction model is developed 

under normal traffic conditions and does not consider the factor of unexpected conditions (e.g., 

serious accidents or special events). Table 3.3 presents the definitions and attributes on selected 

features. Figure 3.2 shows the data pre-preparation process. 

 

Table 3.3 Definitions and Attributes on Selected Features 

Variable Attribute Definition 

ID Categorical Road segment ID 

𝑇𝑡 Float The travel time at the prediction road segment 

Speed  Float Space Mean Speed 

TOD Categorical Time of day is indexed from 1 to 96, which represent the time from 

0:00-24:00 by every 15-minute timestep 

DOW Categorical Day of week is indexed from 1 to 7, which represent from Monday 

through Sunday 

Month  Categorical The Month is indexed 1 to 12, which represent from January to 

December 

Weather Categorical Weather is indexed from 1 to 3, which represent normal, rain and 

snow/ice/fog 

𝑇𝑡−1 Float The travel time at prediction segment 15 minutes before  

𝑇𝑡−2 Float The travel time at prediction segment 30 minutes before  

𝑇𝑡−𝑤 Float The travel time at prediction segment 1 week before  

 

𝛥𝑇𝑡−1 Float The ravel time change value at Tt−1 

𝛥𝑇𝑡−2 Float The ravel time change value at Tt−2 

𝛥𝑇𝑡−𝑤 Float The travel time change value at Tt−w 

𝑇𝑡−1
𝑖−1 Float The travel time of the nearest upstream road segment 15 minutes 

before 

𝑇𝑡−1
𝑖−2 Float The travel time of the second nearest upstream road segment 15 

minutes before 
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𝛥𝑇𝑡−1
𝑖−1 Float The travel time change value at the nearest upstream road segment 

15 minutes before 

𝛥𝑇𝑡−1
𝑖−2 Float The travel time change value at the second nearest upstream road 

segment 15 minutes before 

𝑇𝑡−1
𝑖+1 Float The travel time of the nearest downstream road segment 15 minutes 

before 

𝑇𝑡−1
𝑖+2 Float The travel time of the second nearest downstream road segment 15 

minutes before 

𝛥𝑇𝑡−1
𝑖+1 Float The travel time change value at the nearest downstream road 

segment 15 minutes before 

𝛥𝑇𝑡−1
𝑖+2 Float The travel time change value at the second nearest downstream road 

segment 15 minutes before 

 

 

Figure 3.2 The Data Pre-preparation Steps 
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3.4. Summary 

This chapter presents the detailed information on the data source collection, data structure, 

and pre-preparation approach to combine the travel time with raw weather data. This is intended 

to provide a solid reference and assistance in travel time prediction for future tasks. 
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CHAPTER 4: TRAVEL TIME PREDICTION METHODOLOGY  

Chapter 4 will discuss the travel time prediction methodology based on the data described in 

Chapter 3. Two machine learning based travel time prediction models (RF and XGBoost) will be 

developed. The detailed modelling process of RF will be described such as the data structure 

configuration, parameter determination, model training, and model validation. 

4.1. Random Forest Algorithm 

4.1.1.  Ensemble Learning Methodology  

An ensemble itself is a supervised learning algorithm, which can be trained and used to 

make predictions. The ensemble learning-based algorithms consist of multiple base models (e.g. 

decision tree model), each of which provides an alternative solution to the problem. The 

prediction results tend to be more accurate when there is a strong diversity among the models 

(Kuncheva and Whitaker, 2003). Decision trees always suffer from high variance which causes 

the instability of the prediction results. Bootstrap aggregating (bagging) is a machine learning 

ensemble meta-algorithm designed to improve the stability and accuracy of machine learning 

algorithms. In the bagging process, the algorithm builds multiple models from the same original 

samples data set to reduce the variance. However, the bagging can make the trees highly 

correlated. RF is an extension of bagging in that in addition to building trees based on multiple 

samples of the original training data, it also constrains the features that can be used to build the 

trees, forcing trees to be different. To date, the RF models have been widely applied to various 

research fields (Greenhalgh and Mirmehdi, 2012; Xu et al., 2016). For classification tasks, RF 

typically gives high accuracy while also having a faster classification time. An RF classifier 

requires training with large data sets, which in our study are obviously available because of the 

nature of the travel record data collected. Furthermore, the RF computational process runs 
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efficiently on large data sets, which can reduce model complexity, overcome the overfitting to 

some extent and improve the efficiency. As known, overfitting means that the estimated model 

fits the training data too well. Generally, this is caused by the fact that the model function is too 

complicated to consider each data point and even outliers. The RF method can build a large 

number of random trees and then combine the results from each individual tree. The benefit of 

using the RF methods is that through averaging, the variance can be reduced.  

4.1.2. Random Forest Algorithm 

RF is an algorithm that can compete with gradient enhancement tree in integrated learning, 

especially for its convenient parallel training, which is very tempting in the era of big data and 

large samples. For each tree, the feature selection is conducted randomly. The prediction process 

is showed in the Figure 4.1. The difference between RF algorithm and the decision tree 

algorithm is that in RF, the processes of finding the root node and splitting the feature nodes will 

run randomly.  

 

Input selected variable

(TOD, DOW, Weather, Speed, ...)

Voting process

(ex. 2A, 1B)

Result

(ex. A)

Figure 4.1 Prediction Process of RF Algorithm 

 

Figure 4.2 shows the prediction process of RF algorithm, which is described as follows.  

(1) The number of training data points is N, and the number of variables in the classifier is M. 

(2) Select the m variables in the whole variable set M to determine the decision at a node of the 

tree. (Note that m is always considerably smaller than M) 
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(3) To construct the forest by trees, choose a training set k times with replacement from all N 

training dataset. Each of these datasets is called a bootstrap dataset. The number k is the number 

of the trees to be trained. 

(4) For each tree node, randomly choose m variables on which to make the decision at that node. 

Calculate and get the best split based on these m variables in the training set. 

(5) The “Gini Index” is used for calculating the Gini value to determine the best split point, 

which can be used to describe the purity after split. The Gini index will fall between 0 to 1 and 

the smaller the value, the better the split. If a dataset contains elements from two classes, the Gini 

index is defined as follows: 

𝐺𝑖𝑛𝑖(𝑇) = 1 − ∑(𝑝𝑗
2

𝑛

𝑗=1

) (1) 

where 𝑝𝑗 is the relative proportion of class j in the original dataset T, and n is the number of 

classes in dataset T. 

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡(𝑇) =
𝑁1

𝑁
𝐺𝑖𝑛𝑖(𝑇1) +

𝑁2

𝑁
𝐺𝑖𝑛𝑖(𝑇2) (2) 
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Figure 4.2 RF Algorithm Processing Flow 

 

4.1.3.  Proposed Travel Time Prediction Approaches 

4.1.3.1. Feature Selection and Pre-Processing Steps 

In the prediction model, the southern part of the I-485 freeway is divided into 32 sections by 

the recorded sensor segment in this study. Traffic data on each segment (from sensor to sensor) 

contains information on the subject segment and adjacent segment travel times, Day of Time 

(DOW), Time of Day (TOD), segment length, and space mean speed. The RITIS real-world 

travel time data used for this study have a less than 0.5% missing rate (i.e., 4246 out of 981,083). 

Note that in this study, the missing values are simply replaced with the mean of its closest 

surrounding values. From the previous studies (e.g., Wang et al., 2018), the variables that have a 

significant impact on the travel time prediction included the basic variables (such as time of day, 
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day of week, month and weather) and the spatial and temporal characteristics of the adjacent 

road segments. Furthermore, in this study, the travel times (which are collected several steps 

ahead of the travel time to be predicted) are also accounted for in the model estimation. The 

prediction model is developed under normal traffic conditions and does not consider unexpected 

conditions (e.g., special events). The data on each segment will be used to train one forest which 

consists of decision trees. The RF model prediction includes two major steps: training and 

prediction. The forests are constructed by using randomly selected parameter combinations and 

different numbers of trees during the training step. Table 4.1 presents the definitions and 

attributes on selected features that are used in this study. 

Table 4.1 Definitions and Attributes on Selected Features 

Variable Definition Attribute 

ID Road segment ID Categorical 

L Length of the road segment Float 

Speed  Space Mean Speed Float 

TOD Time of day is indexed from 1 to 96, which represent the time 

from 0:00-24:00 by every 15-minute timestep 

Categorical 

DOW Day of week is indexed from 1 to 7, which represent from Monday 

through Sunday 

Categorical 

Month  The Month is indexed 1 to 12, which represent from January to 

December 

Categorical 

Weather Weather is indexed from 1 to 3, which represent normal, rain and 

snow/ice/fog 

Categorical 

𝑇𝑡−1 The travel time at prediction segment 15 minutes before  Float 

𝑇𝑡−2 The travel time at prediction segment 30 minutes before  Float 

Tt−3 The travel time at prediction segment 45 minutes before Float 

𝑇𝑡−𝑤 The travel time at prediction segment 1 week before  

 

Float 

𝛥𝑇𝑡−1 The ravel time change value at Tt−1 Float 

𝛥𝑇𝑡−2 The ravel time change value at Tt−2 Float 

𝛥𝑇𝑡−3 The travel time change value at Tt−3 Float 

𝛥𝑇𝑡−𝑤 The travel time change value at Tt−w Float 

𝑇𝑡−1
𝑖−1 The travel time of the nearest upstream road segment 15 minutes 

before 

Float 
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𝑇𝑡−1
𝑖−2 The travel time of the second nearest upstream road segment 15 

minutes before 
Float 

𝛥𝑇𝑡−1
𝑖−1 The travel time change value at the nearest upstream road segment 

15 minutes before 
Float 

𝛥𝑇𝑡−1
𝑖−2 The travel time change value at the second nearest upstream road 

segment 15 minutes before 
Float 

𝑇𝑡−1
𝑖+1 The travel time of the nearest downstream road segment 15 

minutes before 
Float 

𝑇𝑡−1
𝑖+2 The travel time of the second nearest downstream road segment 15 

minutes before 
Float 

𝛥𝑇𝑡−1
𝑖+1 The travel time change value at the nearest downstream road 

segment 15 minutes before 
Float 

𝛥𝑇𝑡−1
𝑖+2 The travel time change value at the second nearest downstream 

road segment 15 minutes before 
Float 

𝑇𝑡 The travel time at the prediction road segment Float 

 

4.1.3.2. The Coefficients in the RF Model and the Parameters’ Tuning Process 

To achieve the best modelling results, it is important to explore the effect of different 

combinations of parameters on the RF model prediction performance. Based on previous studies, 

there are primarily three features that can be tuned to optimize the predictive power of the model: 

Max_features, N_estimators (number of trees), and Min_sample-leaf. They are presented as 

follows: 

Max_features: 

This is the maximum number of features in the RF model that is allowed to try in each individual 

tree. There are multiple options available in Python to assign maximum features. “Auto/None” is 

a command that simply takes all the features that make sense in every tree, which simply does 

not put any restrictions on the individual tree. The “SQRT” option takes square root of the total 

number of features in each individual run. For example, if the total number of variables is 100, 

under this option the system can only take 10 of them in each individual tree. The “log2” option 

is another similar type of option used for max_features. In this study, after several tests, the 

random subspace method is applied.  The number of features considered at each internal node of 
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random forests is m, which is randomly chosen to be m = 𝐼𝑁𝑇(𝑙𝑜𝑔2𝑀 + 1), where m is the total 

number of features, as suggested by Breiman (2001a, b). 

n_estimators: 

This is the number of trees that one wants to build before taking the maximum voting or 

averages of predictions. A larger number of trees will give one better performance with a 

compromise of computing efficiency. As such, one should choose a value as high as what the 

processor can handle because this makes the predictions stronger and more stable. 

min_sample_leaf: 

Leaf is the end node of a decision tree. A smaller leaf makes the model more prone to capture 

noise in the train data. In this study, after several trials of different leaf size, a minimum leaf size 

of 20 is chosen. In addition, researchers have to face the problem named “tuning RF parameters 

in practice”, the good answer to which varies from dataset to dataset. In this study, the tool 

RandomSearch is applied to optimize the tuning process. To do so, one needs to define the range 

of parameters and then run these procedures to get the best model. In this study, the first run is 

1000 trees, with 1/2 features per node. RF models are not sensitive if the features are 

independent or dependent, though many will perform better if the data are preprocessed. A 

simple way to identify dependence among features is to calculate a correlation coefficient 

between each feature and all other features. To identify the importance of the features, one can 

build a forest and see which features get used, as RF models tend to split out the results by using 

the most statistically significant features.  

It is also important to note that the performance measure used in this study is the MAPE. The 

statistic mean absolute percentage error usually expresses accuracy as a percentage that is 

calculated as follows: 
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𝑀𝐴𝑃𝐸 =
1

𝑚
∑|𝑦𝑖 − 𝑦𝑖

^|

𝑚

𝑖=1

 

where, m = The total number of the data points, 

            𝑦𝑖
^ = The predicted travel time value in the test dataset of record i, 

            𝑦𝑖 = The actual travel time value in the test dataset of record i. 

4.2. Summary 

This chaper describes the RF travel time prediction methodology, which includes the 

discussions of the RF algorithm, the parameter determination and model training process. To 

optimize the predictive power of the model, there are three features that need to be tuned: 

Max_features, N_estimators (number of trees), and Min_sample-leaf. The potential features from 

the dataset include but are not limited to: time of day, day of week, month of year, weather 

conditions, segment characteristics, etc. The RF based travel time prediction model is developed 

based on the features that are generated from the original data ascdescribed in previous chapter. 

The detail of the coefficients in the RF model and the parameters tuning process is described. 

The statistic MAPE is discribed and selected as the prediction model performance measurement, 

which means the MAPE will be used to measure the prediction error. 
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CHAPTER 5: TRAVEL TIME PREDICTION MODEL 

VALIDATION 
5.1. Introduction 

Chapter 5 will present the validation of the proposed machine learning models based on the 

data described in Chapter 4. For the RF model, the data training step will be described to 

determine the parameters in the model structure. The potential features will include but not limit 

to: time of day, day of week, month of year, weather conditions, segment characteristics, etc. 

One of the most widely used criteria MAPE will be used to measure the prediction error. 

5.2. The Tunning and Validation Process of RF Model 

As mentioned in chapter 4, to improve and finally achive the best modelling results, we 

need to explore the effect of different combinations of parameters on the RF model. Based on 

previous studies, three features (Max_features, N_estimators (number of trees), and 

Min_sample-leaf)  need to be tuned to optimize the prediction result. 

From the Figure 5.1 and Table 5.1, the tunning process shows that when the number of trees 

reaches 50, the value of MAPE becomes nearly the same. In statistics, overfitting is the co-

product of an analysis that corresponds too exactly to the sample set of data, and therefore, may 

fail to fit additional data or predict future observations reliably, which is a general problem of 

traditional ensemble learning methods. For example, the prediction error usually increases when 

the number of trees increases after it reaches the optimized point in the tree base model (Zhang 

and Haghani, 2015). There is also a need to consider the tradeoff between prediction accuracy 

and computational time. Since a large number of trees are being fitted, model complexity also 

increases and requires more computational time.  
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Figure 5.1 RF Travel Time Prediction Model Performance 

 

Table 5.1 The MAPE of a Combination of Parameters 

MAPE 

Number of 

trees Leaf=5 Leaf=8 Leaf=10 Leaf=15 Leaf=20 

1 31.11 29.87 28.75 27.77 26.56 

3 29.05 26.34 25.98 24.21 23.52 

5 27.38 25.9 24.48 23.19 22.09 

10 19.98 16.87 14.22 8.76 5.99 

20 9.78 7.56 6.23 6.11 6.1 

50 6.13 6.14 6.12 6.12 6.12 

100 6.46 6.48 6.49 6.41 6.5 

500 6.7 6.72 6.75 6.76 6.73 

 

In the machine learning area, the predictor variables usually have significant impacts on the 

prediction results. Exploring the influence on the individual feature can help understand the 

variables better. Higher relative importance indicates a higher influence in predicting travel time. 

Table 5.2 presents the relative importance of each variable and their ranks in the optimized RF 

model. In the Table 5.2, each predictor variable has a different impact on the predicted travel 

time. The model result shows that the variable 𝑇𝑡−1(travel time 15 minutes before) contributes 

the most (34.85%) to the predicted travel time result. This result is expected and consistent with 
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a previous study (Zhang and Haghani, 2015), which demonstrates that the immediate previous 

traffic condition will influence the traffic condition in the future. TOD is the second highest 

ranked variable with the relative importance value of 30.12%, and this result is also under 

expectation. 𝑇𝑡−𝑤  is the fourth highest ranked variable with the importance value of 9.87%, 

which can be interpreted as a highly similar pattern of traffic times between weeks. 

The result in Table 5.2 also shows that the spatial impact is less than the time impact since the 

relative importance values of all the spatial variables are less than 1% (except the variable road 

ID with a relative importance value of 2.28%). Several variables such as the travel time of the 

two upstream segments (with the relative importance value of 0.31% and 0.42%, respectively) 

and the travel time of the two downstream segments (with the relative importance value of 

0.35% and 0.61%, respectively) one time-step ahead are considered in the model. With respect to 

the travel time change value, the relative importance values of the two upstream segments are 

both 0.29%, and the relative importance values of the two upstream segments are 0.79% and 

0.37%, respectively. Based on these results, it could be explained that the relative importance 

values of the downstream segments are higher than those of upstream segments.  The reason is 

caused by the spatial characteristics of the roadway. When a bottleneck occurs at the downstream 

segment, the upstream will be impacted very shortly.   
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Table 5.2 Relative Importance of Each Variable and their Ranks in the RF Model 

Variable Definition Relative 

Importance 

(%) 

Attribute 

ID Road segment ID 2.28 7 

L Length of the road segment 0.17 23 

Speed  Space Mean Speed 10.59 3 

TOD Time of day is indexed from 1 to 96, which represent the 

time from 0:00-24:00 by every 15-minute timestep 

30.12 2 

DOW  Day of week is indexed from 1 to 7, which represent from 

Monday through Sunday 

2.84 5 

Month  The Month is indexed 1 to 12, which represent from 

January to December 

1.59 8 

Weather Weather is indexed from 1 to 3, which represent normal, 

rain and snow/ice/fog 

2.63 6 

𝑇𝑡−1 The travel time at prediction segment 15 minutes before  34.85 1 

𝑇𝑡−2 The travel time at prediction segment 30 minutes before  0.57 11 

Tt−3 The travel time at prediction segment 45 minutes 
before 

0.28 18 

𝑇𝑡−𝑤 The travel time at prediction segment 1 week before  

 

9.87 4 

𝛥𝑇𝑡−1 The ravel time change value at Tt−1 0.24 19 

𝛥𝑇𝑡−2 The ravel time change value at Tt−2 0.20 21 

𝛥𝑇𝑡−3 The travel time change value at Tt−3 0.18 22 

𝛥𝑇𝑡−𝑤 The travel time change value at Tt−w 0.22 20 

𝑇𝑡−1
𝑖−1 The travel time of the nearest upstream road segment 15 

minutes before 

0.31 15 

𝑇𝑡−1
𝑖−2 The travel time of the second nearest upstream road 

segment 15 minutes before 
0.42 12 

𝛥𝑇𝑡−1
𝑖−1 The travel time change value at the nearest upstream road 

segment 15 minutes before 
0.29 16 

𝛥𝑇𝑡−1
𝑖−2 The travel time change value at the second nearest 

upstream road segment 15 minutes before 
0.29 16 

𝑇𝑡−1
𝑖+1 The travel time of the nearest downstream road segment 

15 minutes before 
0.35 14 

𝑇𝑡−1
𝑖+2 The travel time of the second nearest downstream road 

segment 15 minutes before 
0.61 10 

𝛥𝑇𝑡−1
𝑖+1 The travel time change value at the nearest downstream 

road segment 15 minutes before 
0.79 9 

𝛥𝑇𝑡−1
𝑖+2 The travel time change value at the second nearest 

downstream road segment 15 minutes before 
0.37 13 
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To measure the effectiveness of different travel time prediction algorithms, the MAPEs are 

computed for 3 different observation segments (A, B, C are three observation segments along the 

selected study freeway, shows in Figure 5.2) with different prediction horizon from 15 minutes 

to 60 minutes. According to the comparison shown in Table 5.3 and Figure 5.3, the performance 

of the proposed RF is better than the eXtreme Gradient Boosting (XGBoost, another widely used 

tree-based ensemble method), especially when the horizon of prediction time is long. The 

MAPEs of RF model are significantly smaller than XGBoost when the horizon is long enough 

(i.e., longer than 45 min).  

 

 
Figure 5.2 Study Road Segment 
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Table 5.3 The Comparison of Different Prediction Method 

MAPE (%) of different observation point with different prediction time range 

Models 15min 30min 45min 60min 

  A B C A B C A B C A B C 

RF 6.49 6.15 6.39  9.69 9.97 10.67 15.29 16.19 17.37 24.59 25.66 26.76 

XGBoost 6.57 6.14 6.39 10.58 9.98 10.89 15.35 15.98 17.90 25.90 26.06 28.09 

 

 
Figure 5.3 MAPE of Different Observation Point with Different Prediction Time Range 

 

5.3. Summary 

In summary, we presents the validation of the proposed machine learning models based on 

the sample dataset. For the machine learning prediction model, the data training step will be 

described to determine the parameters in the model structure.  The relative importance of each 

variable (selected feature) were ranked in the RF travel time prediction model. The relative 

importance of the features shows that the travel time one step ahead (15 minutes before) 

contributes the most (34.85%) to the predicted travel time. The time of day, day of the week, the 

travel time along the prediction segment one week before, and weather also have higher relative 
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importance values in the model than other features. Adding up the most important six variables’ 

relative importance values (Tt−1, TOD, Speed, Tt−w,  DOW, Weather) in Table 5.2 is as high as 

90.90%, which means that these six selected variables include most of the information needed in 

the travel time prediction. Table 5.2 also shows that the time features (such as Tt−1, TOD, Tt−w,  

DOW) have significantly higher relative importance values than the spatial and weather features 

(such as weather, road ID, length, and speed). According to the the prediction performance 

comparison from different selected road test points and different prediction time horizons, the 

proposed RF is proved better than the XGBoost especially when the horizon of prediction time is 

long. The MAPEs of RF model are significantly smaller than XGBoost when the horizon is 

longer than 45 min.  
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CHAPTER 6: SUMMARY AND FUTURE RESEARCH 

6.1. Summary 

Travel time prediction is based on accurate modeling the complex non-linear spatiotemporal 

traffic dynamics in the real world (Ran et al., 2019). The accuracy and interpretability of models 

are two major concerns. In general, RF more like a complex black box models for accuracy 

versus less accurate but more interpretable traditional models such as linear regression. In recent 

year, the increase congestion on freeways has led the increasing of uncertainty, which made the 

TTP model more difficult to achieve the preset prediction accuracy. In this paper, a systematic 

machine learning solution is proposed for short-term TTP. Short-term travel time prediction can 

be an important planning tool for both individuals and public transportation. In both cases, it is 

expected that the application of accurate travel time prediction can improve improve the level of 

service and travel planning by reducing errors between the actual and predicted travel time, 

which will also reduce the whole cost of travel and deliveries. The tree-based ensemble methods 

have been widely used in the field of prediction. By combining a simple tree to a forest, RF 

always produces high prediction accuracy (Zhang and Haghani, 2015). In this research, RF 

approach was developed and compared with XGBoost. The impact of the pre-processing tasks 

(feature selection, domain values definition) in different methods on their performance was also 

studied. Sample dataset from I-485 charlotte was selected to conduct a case study and 

experiments indicated that RF is the most promising approach among all algorithms tested. The 

results showed that all ensemble learning methods achieve a high estimation accuracy.  

Most existing machine learning models can capture the nonlinear pattern of travel time but suffer 

from over-fitting. Study results indicate that the RF model has its considerable advantages in 

freeway travel time prediction, and the performance evaluation result also shows that the RF-
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based model can have better predictions in terms of prediction accuracy. RF model showed a 

reasonable performance compared with other approaches. When the prediction time is no more 

than 15 mins, the RF algorithm is relatively accurate. However, when the prediction horizon is 

longer than 30 minutes, the error increases dramatically. Different from other machine learning 

methods, RF methods provide interpretable results with different types of predictor variables. RF 

can also handle data with very high dimensions (many features) without feature selection 

(because feature subsets are randomly selected), and identifies which features are more important 

after training process. Furthermore, it has an effective way of estimating missing data and 

maintaining accuracy when a significant proportion of the data is missing. The relative 

importance of the features shows that the travel time one step ahead (15 minutes before) 

contributes the most to the predicted travel time. Features such as the time of day, day of the 

week, and the travel time at prediction segment one week before and weather also have higher 

relative importance values in the model than other features. Adding up the most important eight 

variables’ relative importance values ( 𝑇𝑡−1 , TOD, Speed, 𝑇𝑡−w,  DOW, Weather, Road ID, 

Month) will be as high as 94.77%, which means that these eight selected variables include most 

of the information needed in the travel time prediction. The proposed RF travel time prediction 

method has considerable advantages over the other tree-based approach. However, there are still 

some limitations associated with this RF approach. For example, the prediction model is 

developed under normal traffic conditions and does not consider unexpected conditions (e.g., 

special events). 
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6.2. Future Research 

As mentioned, the practice of RF algorithm and other tree-based ensemble methods in travel 

time prediction area are still very limited. The future focus of the research would be hybrid 

models (combination model), which can combine several models of the same or different types 

of prediction models to enhance the model performance and prediction. The RF method can be 

combined with other tree-based methods or another type of machine learning method in the 

preprocessing step or prediction step. Experimental results showed the combination methods 

have a better prediction result then using a method alone (Li et al., 2009). As the combination 

model method has been proved superior in terms of prediction accuracy, this should be given 

careful consideration in the future. 
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	Metropolitan areas suffer from frequent road traffic congestion not only during peak hours but also during off-peak periods. Different machine learning methods have been employed in travel time prediction; however, such machine learning methods practically face the problem of overfitting. Tree based ensembles have been applied in various prediction field, and such approaches usually produce high prediction accuracy by aggregating and averaging individual decision trees. The inherent advantages of these appr
	As the traffic conditions often greatly change, the prediction results are often unsatisfactory. In order to improve the accuracy of short-term travel time prediction in the freeway network, a practically feasible and computationally efficient RF prediction method for real-world freeways by using probe traffic data was generated. In addition, the variables’ relative importance can also be ranked, which provides an investigation platform to gain a better understanding of how different contributing factors mi
	The parameters of the RF model are estimated by using the training sample set. After the parameter tuning process is completed, the proposed RF model is developed. The features’ relative importance showes that the variables travel time 15 minutes before and time of day (TOD) contribute the most to the predicted travel time result. The model performance is also evaluated and compared against extreme gradient boosting method, and the results indicates that the RF always produces more accurate travel time pred
	CHAPTER 1:  INTRODUCTION
	CHAPTER 1:  INTRODUCTION
	 

	1.1. Problem Statement and Motivation 
	Nowadays, travel time prediction plays a significant role as it can greatly help route planning and also the development of countermeasures to reduce traffic congestion. Metropolitan areas are adversely affected by frequent road traffic congestion not only in peak hours but also in off-peak periods. Therefore, the capability to forecast traffic conditions, particularly travel times, is of utmost importance in traffic management applications aimed at relieving negative social, environmental and economic impa
	The acquisition and popularization of big data in the field of transportation have enabled the collection and diffusion of real-time traffic information. Different machine learning approaches 
	have been employed by different researchers, and the results indicated that such approaches can give better performances than traditional models. However, such machine learning methods are practically faced with an overfitting problem that is difficult to overcome. Especially, when the traffic conditions greatly change, the prediction results are often unsatisfactory. In addition, the RF method has 
	have been employed by different researchers, and the results indicated that such approaches can give better performances than traditional models. However, such machine learning methods are practically faced with an overfitting problem that is difficult to overcome. Especially, when the traffic conditions greatly change, the prediction results are often unsatisfactory. In addition, the RF method has 
	a very good Bias-Variance trade-off
	a very good Bias-Variance trade-off

	 which can help avoid the overfitting problem. This research develops an RF method to predict the freeway travel time by using the probe vehicle-based traffic data, and therefore helps to gain a better understanding of how different contributing factors might affect travel time on freeways. In this study, as the second ensemble tree based machine learning method, eXtreme Gradient Boosting (XGBoost) is also deployed, which is an algorithm that has ensemble of decision trees and is robust to outliers. XGBoost

	 The proposed work in this research is intended to fulfill the following objectives: 
	1. To select the most appropriate travel time prediction variables that could be used to accurately predict results; 
	1. To select the most appropriate travel time prediction variables that could be used to accurately predict results; 
	1. To select the most appropriate travel time prediction variables that could be used to accurately predict results; 

	2. To systematically analyze the travel time with the consideration of time of day, day of week, month and weather. The potential significant impact factors are analyzed and ranked; 
	2. To systematically analyze the travel time with the consideration of time of day, day of week, month and weather. The potential significant impact factors are analyzed and ranked; 


	3. To select a real-world freeway corridor to examine the developed prediction models so that the gaps between the theoretical research and the application of the developed travel time prediction model can be bridged. 
	3. To select a real-world freeway corridor to examine the developed prediction models so that the gaps between the theoretical research and the application of the developed travel time prediction model can be bridged. 
	3. To select a real-world freeway corridor to examine the developed prediction models so that the gaps between the theoretical research and the application of the developed travel time prediction model can be bridged. 


	1.2. Objectives 
	 This research is intended to develop and compare advanced machine learning-based approaches (e.g., RF and XGBoost method) are employed to predict the freeway travel time. 
	The expected contributions from this research are summarized as follows:  
	1. Ability to select appropriate machine learning methods to predict travel time and identify the most impact traffic variables; 
	1. Ability to select appropriate machine learning methods to predict travel time and identify the most impact traffic variables; 
	1. Ability to select appropriate machine learning methods to predict travel time and identify the most impact traffic variables; 

	2. Ability to understand the travel time of selected segments with the consideration of time of day, day of week, month and weather. 
	2. Ability to understand the travel time of selected segments with the consideration of time of day, day of week, month and weather. 


	1.3. Report Overview 
	 The research will be structured as follows.  
	In Chapter 1, the background and motivation of the travel time prediction has been discussed, followed by the description of study objectives and expected contributions. 
	Chapter 2 presents a comprehensive review of the current state-of-the-art and state-of-the-practice on short-term travel time prediction. Research on more reliable short-term travel time forecasting has attracted numerous researchers from transportation engineers to data scientists in the last several decades. The machine learning (data-based parametric models and non-parametric models) traffic prediction methods will be introduced. 
	Chapter 3 presents the RITIS data set that is used to analyze travel time prediction, including the travel time data and historical weather data utilized in this study. The detailed information about 
	the raw travel time data sources are described first, followed by the discussions about weather data collection. The data processing steps are also described in detail in this chapter.  
	Chapter 4 discusses the travel time prediction methodology based on the data described in Chapter 3. The Random Forests based travel time prediction model will be developed. The detailed process will be described such as the data structure configuration, parameter determination, model training, and model validation. 
	Chapter 5 presents the validation of the proposed machine learning models based on the data described in Chapter 3. For the machine learning prediction model, the data training step will be described to determine the parameters in the model structure. The potential parameters will include but are not limited to: time of day, day of week, month of year, weather conditions, segment characteristics, etc. The evaluation of the proposed machine learning models based on the data described in previous Chapters. Th
	Chapter 6 concludes the report with a summary of the developed prediction models, solution approaches, and research results. Suggestions for future research will be also provided. 
	CHAPTER 2: LITERATURE REVIEW 
	CHAPTER 2: LITERATURE REVIEW 
	 

	2.1. Introduction 
	This chapter provides a comprehensive review of various aspects related to travel time studies and travel time prediction methodologies. This should give a clear picture of existing current efforts toward the modeling of travel time prediction. 
	The following sections are organized as follows. Section 2.2 presents the definitions of travel time and classification methods. Section 2.3 gives a comprehensive review of existing methods of travel time prediction, which include statistical methods and machine learning methods. Furthermore, the section shows the common research and methods that have been applied to predict travel time. Finally, section 2.4 concludes this chapter with a summary.   
	2.2. Travel Time Prediction 
	2.2.1. Definitions of Travel Time  
	Travel time is defined as the total time for a vehicle to travel from one point to another over a specified route (Zhu et al., 2009).  
	2.2.2. Classification Approach 
	Transportation researchers and data scientists have developed various techniques in the past three decades to provide more reliable future travel time estimation methods (Oh et al., 2015). Generally speaking, such techniques can be classified into three groups: naive methods, traffic theory-based methods and data-driven methods. As the name indicates, the naive prediction models are very simple methods, which typically do not involve the estimation of model parameters. As the model assumptions are usually r
	freeway travel time prediction. Examples include Papageorgiou et al. (2010) and Dion et al. (2004). In data-based traffic time prediction models, the function that relates traffic factors with the prediction result (dependent variable) is not obtained from predetermined traffic theory, as the relationships of variables come from the sample data itself by using statistical data mining methods. This approach greatly expands the pool of researchers who can participate in travel time prediction because they no 
	Travel time prediction can be categorized from different perspectives, and the most popular classification method is to categorize them according to its prognosis horizon as short, medium, and long-term (Oh et al., 2018). Van Lint (2004) defines the short-term travel time prediction at 0-60 minutes intervals. It was found that making the appropriate time horizon in travel time prediction plays the most significant role in the travel time prediction applications (Shen, 2008). And the second important perspec
	2.3. Travel Time Prediction Approach 
	Thanks to the integration of big data and transportation management, different kinds of approaches have been studied and applied in this area. The approaches can be divided into two general groups: statistical methods and machine learning methods. In statistical models, such as the linear regression and time series, the autoregressive integrated moving average (ARIMA) 
	model has been widely applied to predict travel times based on the historical data. Machine learning methods are considered more effective, accurate and feasible. Different machine approaches (such as neural network, ensemble learning and support vector machines) have been employed by different researchers, and the results indicate that such approaches can give better performances than traditional statistical models (Mori et al., 2015). 
	Research on more reliable short-term travel time forecasting has attracted numerous researchers from transportation engineers to data scientists in the last several decades. The machine learning (data-based) traffic prediction methods can be divided into two major categories: parametric models and non-parametric models (Van, 2004). Parametric models are always model-based methods, where all of the parameters can be estimated with empirical data and the model structure is predetermined based on certain theor
	In the non-parametric models, both the structure of the model and the parameters are not predetermined. However, the term “non-parametric” does not mean that there are no parameters in the models to be estimated. Furthermore, the number and typology of the parameters are unknown a priori and sometimes uncountable. Due to the rapid development of data science, non-parametric estimation methodologies are being quickly updated. The non-parametric models tend to be more efficient and therefore the more advanced
	after finding the flattest linear function which relates to the transferred input vectors (i.e., when the target variable with an error smaller than a predefined threshold). This linear function can be mapped again into the initial space and get the final nonlinear function which is used for travel time prediction. Both the ANN and SVM models tend to be overfitting due to the complicated structure and the large number of parameters that need to be calibrated, which is a serious problem commonly existed in t
	Another popular non-parametric approach in the travel time prediction applications is the local regression approach. Local linear regression can be used to optimally balance the use of historical and real time data (Rupnik et al., 2015), which is able to yield accurate prediction results. In the local regression algorithm, a set of historical data which have similar characteristics to the current situation will be selected by the algorithm. The prediction results base themselves on generating a model constr
	Some semi-parametric models have been developed in traffic time prediction, which are a combination of parametric and non-parametric methods. The main idea of the semi-parametric method is to loosen some of the assumptions of the parametric model to obtain a more flexible structure (Ruppert et al., 2003). In the case of application, semi-parametric models are presented in the form of varying coefficient regression models. Travel time can be calculated by a linear function of the naive historical and instant
	With the wide applications of machine learning algorithm in the field of travel time prediction, different approaches have been deployed in different area with different types of data source. 
	The methodologies have been used by researchers include, but are not limited to, the following: SVM, neural network (e.g., State-and-space neural network, long short-term memory neural network), Nearest Neighbor (e.g., k-nearest neighbor), and ensemble learning (e.g., RF and gradient boosting), etc. Some research details are listed as following and Table 2.1 provides a summary of the studies reviewed in chronological order. 
	2.3.1. Support Vector Regression Approach 
	2.3.1.1. Wu et al.’s research work 
	Support Vector Regression (SVR) was applied by Wu et al. (2004) for travel-time prediction and its results were compared to other travel time prediction methods as baseline using real highway traffic data. As SVR has greater generalization ability and guarantee global minima for given training data, it was believed that SVR has a better performance than time series method. The results showed that the SVR predictor can significantly reduce both relative mean errors and root-mean-squared errors of predicted t
	2.3.2. Nearest Neighbors Approach 
	2.3.2.1. Myung et al.’s research work 
	Myung et al. (2011) proposed a model to predict travel times on the basis of the k nearest neighbor (KNN) method using data provided by the vehicle detector system and the automatic toll collection system. By combining these two sets of data, the model minimized the limitations of each dataset and enhanced the prediction’s accuracy. The authors compared the prediction results of the proposed model with the predictions of other models by using actual data. The comparison results showed that the proposed mode
	2.3.2.2. Yu et al.’s research work 
	Yu et al. (2017) combined random forest model and K-NN model in their study to predict bus travel time. The proposed combined-model was compared with linear regression, KNN, SVM and random forest. The results showed the proposed model achieved highest accuracy level and can be applied to real-time prediction.  
	2.3.2.3. Moonam et al.’s research work 
	Moonam et al. (2019) conducted a study to predict the expected travel time based on the experienced travel time using the data mining techniques such as k-nearest neighbor (k-NN), least squares regression boosting (LSBoost) and Kalman filter (KF) methods. The authors compared the performances of each methods from both link and corridor perspectives and concluded that the KF method offers superior prediction accuracy in a link-based model. 
	2.3.3. Neural Network Approach 
	2.3.3.1. Park and Rilett’s research work 
	Park and Rilett (1999) proposed a BP neural network model to predict freeway link travel time. The freeway link travel time collected on freeway of Houston, Texas, by the automatic vehicle identification (AVI) system was used as the validation database. The proposed model could provide acceptable prediction results with the MAPE range being from 7.4% to 18%. 
	2.3.3.2. Van Lint et al.’s research work 
	Van lint et al. (2002) presented an approach to predict freeway travel time based on state-space neural network. The data from freeway operations simulation (FOSIM) 4.1 was used to train and test the travel time prediction model. The authors also eliminated the insignificant parameters in the model and made it more effective without loss of predictive performance. 
	2.3.3.3. Wisitpongphan et al.’s research work 
	Wisitpongphan et al. (2012) proposed a BP neural network model to predict freeway link travel time. The one-month vehicle trajectories data of 297 probes vehicles via GPS database in Thailand were used as the validation database. The prediction results of the proposed model can accurately approximate the travel time with the mean squared error (MSE) less than 3%. 
	2.3.3.4. Zheng and Van Zuylen’s research work 
	Zheng and Van Zuylen (2013) conducted a study using the probe vehicle data to estimate complete link travel times. Based on the information collected by probe vehicles, a three-layer neural network model was proposed by the authors to estimate complete link travel time for individual probe vehicle traversing the link. The estimation result of this model was then compared with an analytical estimation model. The performance of these two models was evaluated with data derived from VISSIM simulation model. The
	2.3.3.5. Duan et al.’s research work 
	Duan et al. (2016) employed a LSTM neural network model to predict freeway travel time. The authors constructed 66 series LSTM neural networks by using travel time data along 66 links of the highways in England. The authors discussed the predictions of multi-step ahead travel time and found 1-step ahead travel time prediction can provide best result.  
	2.3.3.6. Liu et al.’s research work 
	Liu et al. (2017) proposed a LSTM deep neural network model using 16 settings of hyper-parameters to predict the travel time on the interstate highway in California, US. The results of proposed model were compared with the results of other regression models and ARIMA model. The comparison results showed that the performance of the LSTM neural network model was the 
	best. 
	2.3.3.7. Wang et al.’s research work 
	Wang et al. (2018) presented a novel machine learning method to predict the vehicle travel time based on floating-car data. The authors adapted different machine learning models to solve the regression problem. Furthermore, the authors evaluated the solution offline with millions of historical vehicle travel data and the results showed that our proposed deep learning algorithm significantly outperforms the state-of-the-art algorithms. 
	2.3.4. Ensemble Learning Approach 
	2.3.4.1. Hamner et al.’s research work 
	Hamner et al. (2011) applied a context-dependent Random Forest (RF) method to predict travel-time based on GPS data of the cars on the road in a simulation framework. The RMSE of the model was less than 7.5%.  
	2.3.4.2. Zhang and Haghani’s research work 
	Zhang and Haghani (2015) employed a gradient boosting regression tree method to analyze and predict freeway travel time to improve the prediction accuracy. The authors used travel time data along freeway sections in Maryland and discussed the effects of different parameters on the proposed model and the correlations of input and output variables. The prediction results showed the proposed model can provide considerable advantages in freeway travel time prediction. 
	2.3.4.3. Li and Bai’s research work 
	Li and Bai (2016) employed a gradient boosting regression tree method to analyze and predict travel time freight vehicles. The authors used travel time data and vehicle trajectory data in Ningbo, China. Bayesian optimization was used for model fitting in this study. The prediction results showed the proposed model can be feasible in the real-world. 
	2.3.4.4. Gupta et al.’s research work 
	Gupta et al. (2018) employed random forest and gradient boosting models to predict taxi travel time in Porto. The vehicle trajectory data was used as the database and it was found that gradient boosting model provided better prediction results than random forest model. 
	 
	Table 2.1 Summary of Travel Time Prediction Using Machine Learning Approaches 
	Year 
	Year 
	Year 
	Year 
	Year 

	Author 
	Author 

	Country/City 
	Country/City 

	Roadway Category 
	Roadway Category 

	Data Source 
	Data Source 

	Method Category 
	Method Category 

	Data 
	Data 
	Type 

	Prediction method 
	Prediction method 



	2000  
	2000  
	2000  
	2000  

	Wunderlich et al. 
	Wunderlich et al. 

	N/A 
	N/A 

	N/A 
	N/A 

	Simulated data from INTEGRATION 
	Simulated data from INTEGRATION 

	Navie model 
	Navie model 

	Travel time 
	Travel time 

	Exponential filtering 
	Exponential filtering 


	2002 
	2002 
	2002 

	Dion et al. 
	Dion et al. 

	Virginia, US 
	Virginia, US 

	N/A 
	N/A 

	Simulated data from INTEGRATION 
	Simulated data from INTEGRATION 

	Traffic theory-base model 
	Traffic theory-base model 

	Travel time 
	Travel time 

	Delay models 
	Delay models 


	2002 
	2002 
	2002 

	Van Lint et al. 
	Van Lint et al. 

	N/A 
	N/A 

	Freeway 
	Freeway 

	Simulated data from FOSIM  
	Simulated data from FOSIM  

	Non-parametric 
	Non-parametric 

	Travel time, travel speed 
	Travel time, travel speed 

	State-Space Neural Network 
	State-Space Neural Network 


	2005 
	2005 
	2005 

	Wu et al. 
	Wu et al. 

	Taiwan 
	Taiwan 

	Highway 
	Highway 

	Loop detector 
	Loop detector 

	Non-parametric 
	Non-parametric 

	Travel speed 
	Travel speed 

	SVR 
	SVR 


	2007 
	2007 
	2007 

	Schmitt and Jula 
	Schmitt and Jula 

	California, US 
	California, US 

	Urban road 
	Urban road 

	Loop detector 
	Loop detector 

	Navie model 
	Navie model 

	Travel time 
	Travel time 

	Switch model 
	Switch model 


	2008 
	2008 
	2008 

	Zou et al. 
	Zou et al. 

	Maryland, US 
	Maryland, US 

	Highway 
	Highway 

	Roadside detector 
	Roadside detector 

	Hybird non-parametric 
	Hybird non-parametric 

	Travel time 
	Travel time 

	Combined Clustering Neural Networks 
	Combined Clustering Neural Networks 


	2009 
	2009 
	2009 

	Li et al. 
	Li et al. 

	Atlanta, US 
	Atlanta, US 

	N/A 
	N/A 

	simulated data from VISSIM 
	simulated data from VISSIM 

	 
	 
	Hybird non-parametric 

	Travel time, travel speed 
	Travel time, travel speed 

	Combined Boosting and Neural Network 
	Combined Boosting and Neural Network 


	2010 
	2010 
	2010 

	Papageorgiou et al. 
	Papageorgiou et al. 

	N/A 
	N/A 

	N/A 
	N/A 

	simulated data from MATANET 
	simulated data from MATANET 

	Traffic theory-base model 
	Traffic theory-base model 

	Travel time 
	Travel time 

	Macroscopic Simulation 
	Macroscopic Simulation 


	2010 
	2010 
	2010 

	Hamner et al. 
	Hamner et al. 

	N/A 
	N/A 

	N/A 
	N/A 

	GPS 
	GPS 

	Non-parametric 
	Non-parametric 

	Travel speed 
	Travel speed 

	RF 
	RF 


	2011 
	2011 
	2011 

	Myung et al. 
	Myung et al. 

	Korea 
	Korea 

	N/A 
	N/A 

	ATC system 
	ATC system 

	Non-parametric 
	Non-parametric 

	Travel time 
	Travel time 

	KNN 
	KNN 


	2012 
	2012 
	2012 

	Wisitpongphan 
	Wisitpongphan 

	Bangkok, Thailand 
	Bangkok, Thailand 

	Highway 
	Highway 

	GPS 
	GPS 

	Non-parametric 
	Non-parametric 

	Travel time 
	Travel time 

	BP Neural Network 
	BP Neural Network 


	2013  
	2013  
	2013  

	Yildirimoglu & Geroliminis’s 
	Yildirimoglu & Geroliminis’s 

	California, US 
	California, US 

	Freeway 
	Freeway 

	Loop detector 
	Loop detector 

	 
	 
	Hybird non-parametric 

	Travel time 
	Travel time 

	Combined Gaussian Mixture, PCA, and Clustering 
	Combined Gaussian Mixture, PCA, and Clustering 


	2015 
	2015 
	2015 

	Zhang and Haghani 
	Zhang and Haghani 

	Maryland, US 
	Maryland, US 

	Interstate highway 
	Interstate highway 

	INRIX 
	INRIX 

	Non-parametric 
	Non-parametric 

	Travel time 
	Travel time 

	Gradient boosting 
	Gradient boosting 


	2015 
	2015 
	2015 

	Joao et al. 
	Joao et al. 

	Porto, Portugal 
	Porto, Portugal 

	Urban road 
	Urban road 

	STCP system 
	STCP system 

	 
	 
	Hybird non-parametric 

	Travel time 
	Travel time 

	Combined RF, Projection Pursuit Regression and SVM 
	Combined RF, Projection Pursuit Regression and SVM 


	2016 
	2016 
	2016 

	Duan et al. 
	Duan et al. 

	England 
	England 

	Highway 
	Highway 

	Cameras, GPS and loop detectors 
	Cameras, GPS and loop detectors 

	Non-parametric 
	Non-parametric 

	Travel time 
	Travel time 

	LSTM Neural Network 
	LSTM Neural Network 


	2016 
	2016 
	2016 

	Li and Bai 
	Li and Bai 

	Ningbo, China 
	Ningbo, China 

	N/A 
	N/A 

	N/A 
	N/A 

	Non-parametric 
	Non-parametric 

	Truck trajectory, travel time, travel speed 
	Truck trajectory, travel time, travel speed 

	Gradient boosting 
	Gradient boosting 


	2017 
	2017 
	2017 

	Liu et al. 
	Liu et al. 

	California, US 
	California, US 

	Interstate highway 
	Interstate highway 

	PeMS 
	PeMS 

	Non-parametric 
	Non-parametric 

	Travel time 
	Travel time 

	LSTM Neural Network 
	LSTM Neural Network 




	Year 
	Year 
	Year 
	Year 
	Year 

	Author 
	Author 

	Country/City 
	Country/City 

	Roadway Category 
	Roadway Category 

	Data Source 
	Data Source 

	Method Category 
	Method Category 

	Data 
	Data 
	Type 

	Prediction method 
	Prediction method 



	2017 
	2017 
	2017 
	2017 

	Fan et al. 
	Fan et al. 

	Taiwan 
	Taiwan 

	Highway 
	Highway 

	Electric toll 
	Electric toll 

	Non-parametric 
	Non-parametric 

	Travel time, vehicle information 
	Travel time, vehicle information 

	RF method 
	RF method 


	2017 
	2017 
	2017 

	Yu et al. 
	Yu et al. 

	Shenyang, China 
	Shenyang, China 

	bus route 
	bus route 

	AVL system 
	AVL system 

	Non-parametric 
	Non-parametric 

	Bus travel time 
	Bus travel time 

	RF and KNN 
	RF and KNN 


	2018 
	2018 
	2018 

	Wang et al. 
	Wang et al. 

	Beijing, China 
	Beijing, China 

	Urban road 
	Urban road 

	Floating Car Data 
	Floating Car Data 

	Non-parametric 
	Non-parametric 

	Taxi ravel time, vehicle trajectory data 
	Taxi ravel time, vehicle trajectory data 

	LSTM Neural Network 
	LSTM Neural Network 


	2018 
	2018 
	2018 

	Wei et al. 
	Wei et al. 

	China 
	China 

	Urban road 
	Urban road 

	Vehicle passage records  
	Vehicle passage records  

	Non-parametric 
	Non-parametric 

	Travel time 
	Travel time 

	LSTM Neural Network 
	LSTM Neural Network 


	2018 
	2018 
	2018 

	Wang et al. 
	Wang et al. 

	Beijing and Chengdu, China 
	Beijing and Chengdu, China 

	Urban road 
	Urban road 

	GPS 
	GPS 

	Non-parametric 
	Non-parametric 

	Vehicle trajectory data 
	Vehicle trajectory data 

	LSTM Neural Network 
	LSTM Neural Network 


	2018 
	2018 
	2018 

	Gupta et al. 
	Gupta et al. 

	Porto, Portugal 
	Porto, Portugal 

	Urban road 
	Urban road 

	GPS 
	GPS 

	Non-parametric 
	Non-parametric 

	Taxi travel speed 
	Taxi travel speed 

	RF and gradient boosting 
	RF and gradient boosting 


	2019 
	2019 
	2019 

	Moonam et al. 
	Moonam et al. 

	Madison, Wisconsin, US 
	Madison, Wisconsin, US 

	Freeway 
	Freeway 

	Bluetooth detector 
	Bluetooth detector 

	Non-parametric 
	Non-parametric 

	Travel speed 
	Travel speed 

	KNN, KF 
	KNN, KF 


	2019 
	2019 
	2019 

	Kumar et al.  
	Kumar et al.  

	Chennai, India 
	Chennai, India 

	Urban road 
	Urban road 

	GPS 
	GPS 

	Non-parametric 
	Non-parametric 

	Travel time 
	Travel time 

	KNN 
	KNN 


	2019 
	2019 
	2019 

	Cristobal et al. 
	Cristobal et al. 

	Gran Canaria, Spain 
	Gran Canaria, Spain 

	Urban road 
	Urban road 

	Public transport networkl 
	Public transport networkl 

	Non-parametric 
	Non-parametric 

	Travel time 
	Travel time 

	K-Medoid Clustering Technique 
	K-Medoid Clustering Technique 


	2020 
	2020 
	2020 

	Kwak & Geroliminis 
	Kwak & Geroliminis 

	California, US 
	California, US 

	Freeway  
	Freeway  

	PeMS 
	PeMS 

	Parametric  
	Parametric  

	Travel time 
	Travel time 

	Dynamic linear model 
	Dynamic linear model 


	2020 
	2020 
	2020 

	Fu et al. 
	Fu et al. 

	Beijing, Suzhou, Shenyang,China 
	Beijing, Suzhou, Shenyang,China 

	Urban road 
	Urban road 

	Ride-hailing platform 
	Ride-hailing platform 

	Non-parametric 
	Non-parametric 

	Travel time 
	Travel time 

	Graph attention network 
	Graph attention network 


	2021 
	2021 
	2021 

	Chiabaut & Faitout 
	Chiabaut & Faitout 

	Lyon, French 
	Lyon, French 

	Highway 
	Highway 

	Loop detector 
	Loop detector 

	Non-parametric 
	Non-parametric 

	Travel time 
	Travel time 

	PCA and Clustering 
	PCA and Clustering 




	 
	2.4. Summary 
	In summary, with the wide applications of big data in the field of transportation, different machine learning approaches have been deployed in the travel time prediction area. The methodologies include, but are not limited to, the following: SVM regression, neural network approaches (e.g. state-and-space neural network, long short-term memory neural network), nearest neighbor (e.g. k-nearest neighbor) and ensemble learning (e.g. RF and gradient boosting), etc. Table 2.1 provides a summary of the studies rev
	 
	CHAPTER 3: DATA DESCRIPTION AND PROCESSING
	CHAPTER 3: DATA DESCRIPTION AND PROCESSING
	 

	3.1. Introduction 
	This chapter provides the basic information needed for travel time prediction, including the travel time data and historical weather data utilized in this study. The following sections are organized as follows. Section 3.2 presents detailed information about the raw travel time data source, followed by the discussions about weather data collection in section 3.3. Section 3.4 described details of data processing. Finally, section 3.5 concludes this chapter with a summary. 
	3.2. Travel Time Data Collection 
	In this study, the travel time dataset is gathered from the Regional Integrated Transportation Information System (RITIS). RITIS is an advanced traffic system which includes the segment analysis, probe data analytics, and signal analytics. I-485 is one of the most heavily traveled interstate freeways in the City of Charlotte which loops encircling the city. A series of segments in the southern loop are selected for the case study. In order to achieve an acceptable accuracy of prediction, the model has to be
	 
	Figure
	Figure 3.1 Selected Road Segment on Southern 485 
	In this study, the raw weather data are collected at locations that are close to the Charlotte Douglas International airport, which is not far from the selected roadway segments. The raw weather data include weather information such as temperature, dew point, humidity, pressure, visibility, wind direction, wind speed, gust speed, precipitation, and conditions.  Table 3.1 shows a sample of raw weather data.  
	Table 3.1 Sample Raw Weather Data 
	Date 
	Date 
	Date 
	Date 
	Date 

	Time (EDT) 
	Time (EDT) 

	Conditions 
	Conditions 


	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 

	7:55 AM 
	7:55 AM 

	Rain 
	Rain 


	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 

	8:55 AM 
	8:55 AM 

	Rain 
	Rain 


	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 

	9:55 AM 
	9:55 AM 

	Light Rain 
	Light Rain 


	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 

	10:55 AM 
	10:55 AM 

	Light Rain 
	Light Rain 


	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 

	11:55 AM 
	11:55 AM 

	Light Rain 
	Light Rain 


	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 

	12:55 AM 
	12:55 AM 

	Light Rain 
	Light Rain 


	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 
	Saturday, Oct 5th, 2019 

	13:55 PM 
	13:55 PM 

	Light Rain 
	Light Rain 




	 
	 

	It was found that the travel time reliability is sensitive to the weather condition and severe weather (Zhao & Chien, 2012). The weather can greatly affect the travel time and speed, which are two important traffic flow parameters of transportation, resulting in deterioration of a traffic system’s performance (Koetse & Rietveld, 2007). Since the weather data were recorded on a per hour basis, the discrepancy in the time intervals was treated by developing and using a mapping methodology to combine the traff
	It was found that the travel time reliability is sensitive to the weather condition and severe weather (Zhao & Chien, 2012). The weather can greatly affect the travel time and speed, which are two important traffic flow parameters of transportation, resulting in deterioration of a traffic system’s performance (Koetse & Rietveld, 2007). Since the weather data were recorded on a per hour basis, the discrepancy in the time intervals was treated by developing and using a mapping methodology to combine the traff
	 

	  
	Table 3.2 Classification of the Weather Conditions 
	Original Weather Condition 
	Original Weather Condition 
	Original Weather Condition 
	Original Weather Condition 
	Original Weather Condition 

	Weather Category in study 
	Weather Category in study 



	Haze 
	Haze 
	Haze 
	Haze 

	Snow/fog/ice 
	Snow/fog/ice 


	TR
	Fog 
	Fog 


	TR
	Smoke 
	Smoke 


	TR
	Patches of Fog 
	Patches of Fog 


	TR
	Mist 
	Mist 


	TR
	Shallow Fog 
	Shallow Fog 


	TR
	Light Freezing R 
	Light Freezing R 


	TR
	Light Ice Pellet 
	Light Ice Pellet 


	TR
	Light Freezing D 
	Light Freezing D 


	TR
	Light Freezing F 
	Light Freezing F 


	TR
	Ice Pellets 
	Ice Pellets 


	TR
	Light Snow 
	Light Snow 


	TR
	Snow 
	Snow 


	TR
	Heavy Snow 
	Heavy Snow 


	Clear 
	Clear 
	Clear 

	Normal 
	Normal 


	TR
	Partly Cloudy 
	Partly Cloudy 


	TR
	Mostly Cloudy 
	Mostly Cloudy 


	TR
	Scattered Clouds 
	Scattered Clouds 


	TR
	Overcast 
	Overcast 


	TR
	Unknown 
	Unknown 


	TR
	Squalls 
	Squalls 


	Light Rain 
	Light Rain 
	Light Rain 

	Rain 
	Rain 


	TR
	Rain 
	Rain 


	TR
	Heavy Rain 
	Heavy Rain 


	TR
	Light Drizzle 
	Light Drizzle 


	TR
	Heavy Thunderstorm 
	Heavy Thunderstorm 


	TR
	Thunderstorms an 
	Thunderstorms an 


	TR
	Light Thunderstorm 
	Light Thunderstorm 


	TR
	Thunderstorm 
	Thunderstorm 


	TR
	Drizzle 
	Drizzle 




	 
	3.3.   Feature Selection and Pre-Processing Steps 
	In this study, the dataset is collected from the southern part of the I-485 freeway, which is divided into 32 sections by the recorded sensor segment. The traffic information on each segment (from sensor to sensor) contains the subject segment and adjacent segment travel times, 
	Day of Time (DOW), Time of Day (TOD), segment length, and space mean speed and other traffic information. The missing data rate of the sample dataset in this study is less than 0.5% (i.e., 4246 out of 981,083), and the missing values are replaced with the mean of its closest surrounding values. A well-defined preprocessing capability that corrects various types of data errors including missing data is mandatory for a reliable travel time prediction system with acceptable accuracy and efficiency (Oh et al.,2
	 
	Table 3.3 Definitions and Attributes on Selected Features 
	Variable 
	Variable 
	Variable 
	Variable 
	Variable 

	Attribute 
	Attribute 

	Definition 
	Definition 



	ID 
	ID 
	ID 
	ID 

	Categorical 
	Categorical 

	Road segment ID 
	Road segment ID 


	𝑇𝑡 
	𝑇𝑡 
	𝑇𝑡 

	Float 
	Float 

	The travel time at the prediction road segment 
	The travel time at the prediction road segment 


	Speed  
	Speed  
	Speed  

	Float 
	Float 

	Space Mean Speed 
	Space Mean Speed 


	TOD 
	TOD 
	TOD 

	Categorical 
	Categorical 

	Time of day is indexed from 1 to 96, which represent the time from 0:00-24:00 by every 15-minute timestep 
	Time of day is indexed from 1 to 96, which represent the time from 0:00-24:00 by every 15-minute timestep 


	DOW 
	DOW 
	DOW 

	Categorical 
	Categorical 

	Day of week is indexed from 1 to 7, which represent from Monday through Sunday 
	Day of week is indexed from 1 to 7, which represent from Monday through Sunday 


	Month  
	Month  
	Month  

	Categorical 
	Categorical 

	The Month is indexed 1 to 12, which represent from January to December 
	The Month is indexed 1 to 12, which represent from January to December 


	Weather 
	Weather 
	Weather 

	Categorical 
	Categorical 

	Weather is indexed from 1 to 3, which represent normal, rain and snow/ice/fog 
	Weather is indexed from 1 to 3, which represent normal, rain and snow/ice/fog 


	𝑇𝑡−1 
	𝑇𝑡−1 
	𝑇𝑡−1 

	Float 
	Float 

	The travel time at prediction segment 15 minutes before  
	The travel time at prediction segment 15 minutes before  


	𝑇𝑡−2 
	𝑇𝑡−2 
	𝑇𝑡−2 

	Float 
	Float 

	The travel time at prediction segment 30 minutes before  
	The travel time at prediction segment 30 minutes before  


	𝑇𝑡−𝑤 
	𝑇𝑡−𝑤 
	𝑇𝑡−𝑤 

	Float 
	Float 

	The travel time at prediction segment 1 week before  
	The travel time at prediction segment 1 week before  
	 


	𝛥𝑇𝑡−1 
	𝛥𝑇𝑡−1 
	𝛥𝑇𝑡−1 

	Float 
	Float 

	The ravel time change value at Tt−1 
	The ravel time change value at Tt−1 


	𝛥𝑇𝑡−2 
	𝛥𝑇𝑡−2 
	𝛥𝑇𝑡−2 

	Float 
	Float 

	The ravel time change value at Tt−2 
	The ravel time change value at Tt−2 


	𝛥𝑇𝑡−𝑤 
	𝛥𝑇𝑡−𝑤 
	𝛥𝑇𝑡−𝑤 

	Float 
	Float 

	The travel time change value at Tt−w 
	The travel time change value at Tt−w 


	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 

	Float 
	Float 

	The travel time of the nearest upstream road segment 15 minutes before 
	The travel time of the nearest upstream road segment 15 minutes before 


	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 

	Float 
	Float 

	The travel time of the second nearest upstream road segment 15 minutes before 
	The travel time of the second nearest upstream road segment 15 minutes before 




	𝛥𝑇𝑡−1𝑖−1 
	𝛥𝑇𝑡−1𝑖−1 
	𝛥𝑇𝑡−1𝑖−1 
	𝛥𝑇𝑡−1𝑖−1 
	𝛥𝑇𝑡−1𝑖−1 

	Float 
	Float 

	The travel time change value at the nearest upstream road segment 15 minutes before 
	The travel time change value at the nearest upstream road segment 15 minutes before 


	𝛥𝑇𝑡−1𝑖−2 
	𝛥𝑇𝑡−1𝑖−2 
	𝛥𝑇𝑡−1𝑖−2 

	Float 
	Float 

	The travel time change value at the second nearest upstream road segment 15 minutes before 
	The travel time change value at the second nearest upstream road segment 15 minutes before 


	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 

	Float 
	Float 

	The travel time of the nearest downstream road segment 15 minutes before 
	The travel time of the nearest downstream road segment 15 minutes before 


	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 

	Float 
	Float 

	The travel time of the second nearest downstream road segment 15 minutes before 
	The travel time of the second nearest downstream road segment 15 minutes before 


	𝛥𝑇𝑡−1𝑖+1 
	𝛥𝑇𝑡−1𝑖+1 
	𝛥𝑇𝑡−1𝑖+1 

	Float 
	Float 

	The travel time change value at the nearest downstream road segment 15 minutes before 
	The travel time change value at the nearest downstream road segment 15 minutes before 


	𝛥𝑇𝑡−1𝑖+2 
	𝛥𝑇𝑡−1𝑖+2 
	𝛥𝑇𝑡−1𝑖+2 

	Float 
	Float 

	The travel time change value at the second nearest downstream road segment 15 minutes before 
	The travel time change value at the second nearest downstream road segment 15 minutes before 




	 
	 
	Figure
	Figure 3.2 The Data Pre-preparation Steps 
	3.4. Summary 
	This chapter presents the detailed information on the data source collection, data structure, and pre-preparation approach to combine the travel time with raw weather data. This is intended to provide a solid reference and assistance in travel time prediction for future tasks. 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CHAPTER 4: TRAVEL TIME PREDICTION METHODOLOGY 
	CHAPTER 4: TRAVEL TIME PREDICTION METHODOLOGY 
	 

	Chapter 4 will discuss the travel time prediction methodology based on the data described in Chapter 3. Two machine learning based travel time prediction models (RF and XGBoost) will be developed. The detailed modelling process of RF will be described such as the data structure configuration, parameter determination, model training, and model validation. 
	4.1. Random Forest Algorithm 
	4.1.1.  Ensemble Learning Methodology  
	An ensemble itself is a supervised learning algorithm, which can be trained and used to make predictions. The ensemble learning-based algorithms consist of multiple base models (e.g. decision tree model), each of which provides an alternative solution to the problem. The prediction results tend to be more accurate when there is a strong diversity among the models (Kuncheva and Whitaker, 2003). Decision trees always suffer from high variance which causes the instability of the prediction results. Bootstrap a
	efficiently on large data sets, which can reduce model complexity, overcome the overfitting to some extent and improve the efficiency. As known, overfitting means that the estimated model fits the training data too well. Generally, this is caused by the fact that the model function is too complicated to consider each data point and even outliers. The RF method can build a large number of random trees and then combine the results from each individual tree. The benefit of using the RF methods is that through 
	4.1.2. Random Forest Algorithm 
	RF is an algorithm that can compete with gradient enhancement tree in integrated learning, especially for its convenient parallel training, which is very tempting in the era of big data and large samples. For each tree, the feature selection is conducted randomly. The prediction process is showed in the Figure 4.1. The difference between RF algorithm and the decision tree algorithm is that in RF, the processes of finding the root node and splitting the feature nodes will run randomly.  
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	Figure

	Figure 4.1 Prediction Process of RF Algorithm 
	 
	Figure 4.2 shows the prediction process of RF algorithm, which is described as follows.  
	(1) The number of training data points is N, and the number of variables in the classifier is M. 
	(2) Select the m variables in the whole variable set M to determine the decision at a node of the tree. (Note that m is always considerably smaller than M) 
	(3) To construct the forest by trees, choose a training set k times with replacement from all N training dataset. Each of these datasets is called a bootstrap dataset. The number k is the number of the trees to be trained. 
	(4) For each tree node, randomly choose m variables on which to make the decision at that node. Calculate and get the best split based on these m variables in the training set. 
	(5) The “Gini Index” is used for calculating the Gini value to determine the best split point, which can be used to describe the purity after split. The Gini index will fall between 0 to 1 and the smaller the value, the better the split. If a dataset contains elements from two classes, the Gini index is defined as follows: 𝐺𝑖𝑛𝑖(𝑇)=1−∑(𝑝𝑗2𝑛𝑗=1) (1) 
	where 𝑝𝑗 is the relative proportion of class j in the original dataset T, and n is the number of classes in dataset T. 𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡(𝑇)=𝑁1𝑁𝐺𝑖𝑛𝑖(𝑇1)+𝑁2𝑁𝐺𝑖𝑛𝑖(𝑇2)(2) 
	 
	 
	Figure
	Figure 4.2 RF Algorithm Processing Flow 
	 
	4.1.3.  Proposed Travel Time Prediction Approaches 
	4.1.3.1. Feature Selection and Pre-Processing Steps 
	In the prediction model, the southern part of the I-485 freeway is divided into 32 sections by the recorded sensor segment in this study. Traffic data on each segment (from sensor to sensor) contains information on the subject segment and adjacent segment travel times, Day of Time (DOW), Time of Day (TOD), segment length, and space mean speed. The RITIS real-world travel time data used for this study have a less than 0.5% missing rate (i.e., 4246 out of 981,083). Note that in this study, the missing values 
	day of week, month and weather) and the spatial and temporal characteristics of the adjacent road segments. Furthermore, in this study, the travel times (which are collected several steps ahead of the travel time to be predicted) are also accounted for in the model estimation. The prediction model is developed under normal traffic conditions and does not consider unexpected conditions (e.g., special events). The data on each segment will be used to train one forest which consists of decision trees. The RF m
	Table 4.1 Definitions and Attributes on Selected Features 
	Variable 
	Variable 
	Variable 
	Variable 
	Variable 

	Definition 
	Definition 

	Attribute 
	Attribute 



	ID 
	ID 
	ID 
	ID 

	Road segment ID 
	Road segment ID 

	Categorical 
	Categorical 


	L 
	L 
	L 

	Length of the road segment 
	Length of the road segment 

	Float 
	Float 


	Speed  
	Speed  
	Speed  

	Space Mean Speed 
	Space Mean Speed 

	Float 
	Float 


	TOD 
	TOD 
	TOD 

	Time of day is indexed from 1 to 96, which represent the time from 0:00-24:00 by every 15-minute timestep 
	Time of day is indexed from 1 to 96, which represent the time from 0:00-24:00 by every 15-minute timestep 

	Categorical 
	Categorical 


	DOW 
	DOW 
	DOW 

	Day of week is indexed from 1 to 7, which represent from Monday through Sunday 
	Day of week is indexed from 1 to 7, which represent from Monday through Sunday 

	Categorical 
	Categorical 


	Month  
	Month  
	Month  

	The Month is indexed 1 to 12, which represent from January to December 
	The Month is indexed 1 to 12, which represent from January to December 

	Categorical 
	Categorical 


	Weather 
	Weather 
	Weather 

	Weather is indexed from 1 to 3, which represent normal, rain and snow/ice/fog 
	Weather is indexed from 1 to 3, which represent normal, rain and snow/ice/fog 

	Categorical 
	Categorical 


	𝑇𝑡−1 
	𝑇𝑡−1 
	𝑇𝑡−1 

	The travel time at prediction segment 15 minutes before  
	The travel time at prediction segment 15 minutes before  

	Float 
	Float 


	𝑇𝑡−2 
	𝑇𝑡−2 
	𝑇𝑡−2 

	The travel time at prediction segment 30 minutes before  
	The travel time at prediction segment 30 minutes before  

	Float 
	Float 


	Tt−3 
	Tt−3 
	Tt−3 

	The travel time at prediction segment 45 minutes before 
	The travel time at prediction segment 45 minutes before 

	Float 
	Float 


	𝑇𝑡−𝑤 
	𝑇𝑡−𝑤 
	𝑇𝑡−𝑤 

	The travel time at prediction segment 1 week before  
	The travel time at prediction segment 1 week before  
	 

	Float 
	Float 


	𝛥𝑇𝑡−1 
	𝛥𝑇𝑡−1 
	𝛥𝑇𝑡−1 

	The ravel time change value at Tt−1 
	The ravel time change value at Tt−1 

	Float 
	Float 


	𝛥𝑇𝑡−2 
	𝛥𝑇𝑡−2 
	𝛥𝑇𝑡−2 

	The ravel time change value at Tt−2 
	The ravel time change value at Tt−2 

	Float 
	Float 


	𝛥𝑇𝑡−3 
	𝛥𝑇𝑡−3 
	𝛥𝑇𝑡−3 

	The travel time change value at Tt−3 
	The travel time change value at Tt−3 

	Float 
	Float 


	𝛥𝑇𝑡−𝑤 
	𝛥𝑇𝑡−𝑤 
	𝛥𝑇𝑡−𝑤 

	The travel time change value at Tt−w 
	The travel time change value at Tt−w 

	Float 
	Float 


	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 

	The travel time of the nearest upstream road segment 15 minutes before 
	The travel time of the nearest upstream road segment 15 minutes before 

	Float 
	Float 




	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 

	The travel time of the second nearest upstream road segment 15 minutes before 
	The travel time of the second nearest upstream road segment 15 minutes before 

	Float 
	Float 


	𝛥𝑇𝑡−1𝑖−1 
	𝛥𝑇𝑡−1𝑖−1 
	𝛥𝑇𝑡−1𝑖−1 

	The travel time change value at the nearest upstream road segment 15 minutes before 
	The travel time change value at the nearest upstream road segment 15 minutes before 

	Float 
	Float 


	𝛥𝑇𝑡−1𝑖−2 
	𝛥𝑇𝑡−1𝑖−2 
	𝛥𝑇𝑡−1𝑖−2 

	The travel time change value at the second nearest upstream road segment 15 minutes before 
	The travel time change value at the second nearest upstream road segment 15 minutes before 

	Float 
	Float 


	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 

	The travel time of the nearest downstream road segment 15 minutes before 
	The travel time of the nearest downstream road segment 15 minutes before 

	Float 
	Float 


	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 

	The travel time of the second nearest downstream road segment 15 minutes before 
	The travel time of the second nearest downstream road segment 15 minutes before 

	Float 
	Float 


	𝛥𝑇𝑡−1𝑖+1 
	𝛥𝑇𝑡−1𝑖+1 
	𝛥𝑇𝑡−1𝑖+1 

	The travel time change value at the nearest downstream road segment 15 minutes before 
	The travel time change value at the nearest downstream road segment 15 minutes before 

	Float 
	Float 


	𝛥𝑇𝑡−1𝑖+2 
	𝛥𝑇𝑡−1𝑖+2 
	𝛥𝑇𝑡−1𝑖+2 

	The travel time change value at the second nearest downstream road segment 15 minutes before 
	The travel time change value at the second nearest downstream road segment 15 minutes before 

	Float 
	Float 


	𝑇𝑡 
	𝑇𝑡 
	𝑇𝑡 

	The travel time at the prediction road segment 
	The travel time at the prediction road segment 

	Float 
	Float 




	 
	4.1.3.2. The Coefficients in the RF Model and the Parameters’ Tuning Process 
	To achieve the best modelling results, it is important to explore the effect of different combinations of parameters on the RF model prediction performance. Based on previous studies, there are primarily three features that can be tuned to optimize the predictive power of the model: Max_features, N_estimators (number of trees), and Min_sample-leaf. They are presented as follows: 
	Max_features: 
	This is the maximum number of features in the RF model that is allowed to try in each individual tree. There are multiple options available in Python to assign maximum features. “Auto/None” is a command that simply takes all the features that make sense in every tree, which simply does not put any restrictions on the individual tree. The “SQRT” option takes square root of the total number of features in each individual run. For example, if the total number of variables is 100, under this option the system c
	random forests is m, which is randomly chosen to be m = 𝐼𝑁𝑇(𝑙𝑜𝑔2𝑀+1), where m is the total number of features, as suggested by Breiman (2001a, b). 
	n_estimators: 
	This is the number of trees that one wants to build before taking the maximum voting or averages of predictions. A larger number of trees will give one better performance with a compromise of computing efficiency. As such, one should choose a value as high as what the processor can handle because this makes the predictions stronger and more stable. 
	min_sample_leaf: 
	Leaf is the end node of a decision tree. A smaller leaf makes the model more prone to capture noise in the train data. In this study, after several trials of different leaf size, a minimum leaf size of 20 is chosen. In addition, researchers have to face the problem named “tuning RF parameters in practice”, the good answer to which varies from dataset to dataset. In this study, the tool RandomSearch is applied to optimize the tuning process. To do so, one needs to define the range of parameters and then run 
	It is also important to note that the performance measure used in this study is the MAPE. The statistic mean absolute percentage error usually expresses accuracy as a percentage that is calculated as follows: 
	𝑀𝐴𝑃𝐸=1𝑚∑|𝑦𝑖−𝑦𝑖^|𝑚𝑖=1 
	where, m = The total number of the data points, 
	            𝑦𝑖^ = The predicted travel time value in the test dataset of record i, 
	            𝑦𝑖 = The actual travel time value in the test dataset of record i. 
	4.2. Summary 
	This chaper describes the RF travel time prediction methodology, which includes the discussions of the RF algorithm, the parameter determination and model training process. To optimize the predictive power of the model, there are three features that need to be tuned: Max_features, N_estimators (number of trees), and Min_sample-leaf. The potential features from the dataset include but are not limited to: time of day, day of week, month of year, weather conditions, segment characteristics, etc. The RF based t
	 
	 
	 
	 
	 
	 

	CHAPTER 5: TRAVEL TIME PREDICTION MODEL VALIDATION
	CHAPTER 5: TRAVEL TIME PREDICTION MODEL VALIDATION
	 

	5.1. Introduction 
	Chapter 5 will present the validation of the proposed machine learning models based on the data described in Chapter 4. For the RF model, the data training step will be described to determine the parameters in the model structure. The potential features will include but not limit to: time of day, day of week, month of year, weather conditions, segment characteristics, etc. One of the most widely used criteria MAPE will be used to measure the prediction error. 
	5.2. The Tunning and Validation Process of RF Model 
	As mentioned in chapter 4, to improve and finally achive the best modelling results, we need to explore the effect of different combinations of parameters on the RF model. Based on previous studies, three features (Max_features, N_estimators (number of trees), and Min_sample-leaf)  need to be tuned to optimize the prediction result. 
	From the Figure 5.1 and Table 5.1, the tunning process shows that when the number of trees reaches 50, the value of MAPE becomes nearly the same. In statistics, overfitting is the co-product of an analysis that corresponds too exactly to the sample set of data, and therefore, may fail to fit additional data or predict future observations reliably, which is a general problem of traditional ensemble learning methods. For example, the prediction error usually increases when the number of trees increases after 
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	Figure 5.1 RF Travel Time Prediction Model Performance 
	 
	Table 5.1 The MAPE of a Combination of Parameters 
	MAPE 
	MAPE 
	MAPE 
	MAPE 
	MAPE 



	Number of trees 
	Number of trees 
	Number of trees 
	Number of trees 

	Leaf=5 
	Leaf=5 

	Leaf=8 
	Leaf=8 

	Leaf=10 
	Leaf=10 

	Leaf=15 
	Leaf=15 

	Leaf=20 
	Leaf=20 


	1 
	1 
	1 

	31.11 
	31.11 

	29.87 
	29.87 

	28.75 
	28.75 

	27.77 
	27.77 

	26.56 
	26.56 


	3 
	3 
	3 

	29.05 
	29.05 

	26.34 
	26.34 

	25.98 
	25.98 

	24.21 
	24.21 

	23.52 
	23.52 


	5 
	5 
	5 

	27.38 
	27.38 

	25.9 
	25.9 

	24.48 
	24.48 

	23.19 
	23.19 

	22.09 
	22.09 


	10 
	10 
	10 

	19.98 
	19.98 

	16.87 
	16.87 

	14.22 
	14.22 

	8.76 
	8.76 

	5.99 
	5.99 


	20 
	20 
	20 

	9.78 
	9.78 

	7.56 
	7.56 

	6.23 
	6.23 

	6.11 
	6.11 

	6.1 
	6.1 


	50 
	50 
	50 

	6.13 
	6.13 

	6.14 
	6.14 

	6.12 
	6.12 

	6.12 
	6.12 

	6.12 
	6.12 


	100 
	100 
	100 

	6.46 
	6.46 

	6.48 
	6.48 

	6.49 
	6.49 

	6.41 
	6.41 

	6.5 
	6.5 


	500 
	500 
	500 

	6.7 
	6.7 

	6.72 
	6.72 

	6.75 
	6.75 

	6.76 
	6.76 

	6.73 
	6.73 




	 
	In the machine learning area, the predictor variables usually have significant impacts on the prediction results. Exploring the influence on the individual feature can help understand the variables better. Higher relative importance indicates a higher influence in predicting travel time. Table 5.2 presents the relative importance of each variable and their ranks in the optimized RF model. In the Table 5.2, each predictor variable has a different impact on the predicted travel time. The model result shows th
	a previous study (Zhang and Haghani, 2015), which demonstrates that the immediate previous traffic condition will influence the traffic condition in the future. TOD is the second highest ranked variable with the relative importance value of 30.12%, and this result is also under expectation. 𝑇𝑡−𝑤 is the fourth highest ranked variable with the importance value of 9.87%, which can be interpreted as a highly similar pattern of traffic times between weeks. 
	The result in Table 5.2 also shows that the spatial impact is less than the time impact since the relative importance values of all the spatial variables are less than 1% (except the variable road ID with a relative importance value of 2.28%). Several variables such as the travel time of the two upstream segments (with the relative importance value of 0.31% and 0.42%, respectively) and the travel time of the two downstream segments (with the relative importance value of 0.35% and 0.61%, respectively) one ti
	Table 5.2 Relative Importance of Each Variable and their Ranks in the RF Model 
	Variable 
	Variable 
	Variable 
	Variable 
	Variable 

	Definition 
	Definition 

	Relative Importance (%) 
	Relative Importance (%) 

	Attribute 
	Attribute 



	ID 
	ID 
	ID 
	ID 

	Road segment ID 
	Road segment ID 

	2.28 
	2.28 

	7 
	7 


	L 
	L 
	L 

	Length of the road segment 
	Length of the road segment 

	0.17 
	0.17 

	23 
	23 


	Speed  
	Speed  
	Speed  

	Space Mean Speed 
	Space Mean Speed 

	10.59 
	10.59 

	3 
	3 


	TOD 
	TOD 
	TOD 

	Time of day is indexed from 1 to 96, which represent the time from 0:00-24:00 by every 15-minute timestep 
	Time of day is indexed from 1 to 96, which represent the time from 0:00-24:00 by every 15-minute timestep 

	30.12 
	30.12 

	2 
	2 


	DOW 
	DOW 
	DOW 

	 Day of week is indexed from 1 to 7, which represent from Monday through Sunday 
	 Day of week is indexed from 1 to 7, which represent from Monday through Sunday 

	2.84 
	2.84 

	5 
	5 


	Month  
	Month  
	Month  

	The Month is indexed 1 to 12, which represent from January to December 
	The Month is indexed 1 to 12, which represent from January to December 

	1.59 
	1.59 

	8 
	8 


	Weather 
	Weather 
	Weather 

	Weather is indexed from 1 to 3, which represent normal, rain and snow/ice/fog 
	Weather is indexed from 1 to 3, which represent normal, rain and snow/ice/fog 

	2.63 
	2.63 

	6 
	6 


	𝑇𝑡−1 
	𝑇𝑡−1 
	𝑇𝑡−1 

	The travel time at prediction segment 15 minutes before  
	The travel time at prediction segment 15 minutes before  

	34.85 
	34.85 

	1 
	1 


	𝑇𝑡−2 
	𝑇𝑡−2 
	𝑇𝑡−2 

	The travel time at prediction segment 30 minutes before  
	The travel time at prediction segment 30 minutes before  

	0.57 
	0.57 

	11 
	11 


	Tt−3 
	Tt−3 
	Tt−3 

	The travel time at prediction segment 45 minutes before 
	The travel time at prediction segment 45 minutes before 

	0.28 
	0.28 

	18 
	18 


	𝑇𝑡−𝑤 
	𝑇𝑡−𝑤 
	𝑇𝑡−𝑤 

	The travel time at prediction segment 1 week before  
	The travel time at prediction segment 1 week before  
	 

	9.87 
	9.87 

	4 
	4 


	𝛥𝑇𝑡−1 
	𝛥𝑇𝑡−1 
	𝛥𝑇𝑡−1 

	The ravel time change value at Tt−1 
	The ravel time change value at Tt−1 

	0.24 
	0.24 

	19 
	19 


	𝛥𝑇𝑡−2 
	𝛥𝑇𝑡−2 
	𝛥𝑇𝑡−2 

	The ravel time change value at Tt−2 
	The ravel time change value at Tt−2 

	0.20 
	0.20 

	21 
	21 


	𝛥𝑇𝑡−3 
	𝛥𝑇𝑡−3 
	𝛥𝑇𝑡−3 

	The travel time change value at Tt−3 
	The travel time change value at Tt−3 

	0.18 
	0.18 

	22 
	22 


	𝛥𝑇𝑡−𝑤 
	𝛥𝑇𝑡−𝑤 
	𝛥𝑇𝑡−𝑤 

	The travel time change value at Tt−w 
	The travel time change value at Tt−w 

	0.22 
	0.22 

	20 
	20 


	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 

	The travel time of the nearest upstream road segment 15 minutes before 
	The travel time of the nearest upstream road segment 15 minutes before 

	0.31 
	0.31 

	15 
	15 


	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 

	The travel time of the second nearest upstream road segment 15 minutes before 
	The travel time of the second nearest upstream road segment 15 minutes before 

	0.42 
	0.42 

	12 
	12 


	𝛥𝑇𝑡−1𝑖−1 
	𝛥𝑇𝑡−1𝑖−1 
	𝛥𝑇𝑡−1𝑖−1 

	The travel time change value at the nearest upstream road segment 15 minutes before 
	The travel time change value at the nearest upstream road segment 15 minutes before 

	0.29 
	0.29 

	16 
	16 


	𝛥𝑇𝑡−1𝑖−2 
	𝛥𝑇𝑡−1𝑖−2 
	𝛥𝑇𝑡−1𝑖−2 

	The travel time change value at the second nearest upstream road segment 15 minutes before 
	The travel time change value at the second nearest upstream road segment 15 minutes before 

	0.29 
	0.29 

	16 
	16 


	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 

	The travel time of the nearest downstream road segment 15 minutes before 
	The travel time of the nearest downstream road segment 15 minutes before 

	0.35 
	0.35 

	14 
	14 


	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 

	The travel time of the second nearest downstream road segment 15 minutes before 
	The travel time of the second nearest downstream road segment 15 minutes before 

	0.61 
	0.61 

	10 
	10 


	𝛥𝑇𝑡−1𝑖+1 
	𝛥𝑇𝑡−1𝑖+1 
	𝛥𝑇𝑡−1𝑖+1 

	The travel time change value at the nearest downstream road segment 15 minutes before 
	The travel time change value at the nearest downstream road segment 15 minutes before 

	0.79 
	0.79 

	9 
	9 


	𝛥𝑇𝑡−1𝑖+2 
	𝛥𝑇𝑡−1𝑖+2 
	𝛥𝑇𝑡−1𝑖+2 

	The travel time change value at the second nearest downstream road segment 15 minutes before 
	The travel time change value at the second nearest downstream road segment 15 minutes before 

	0.37 
	0.37 

	13 
	13 




	 
	 
	To measure the effectiveness of different travel time prediction algorithms, the MAPEs are computed for 3 different observation segments (A, B, C are three observation segments along the selected study freeway, shows in Figure 5.2) with different prediction horizon from 15 minutes to 60 minutes. According to the comparison shown in Table 5.3 and Figure 5.3, the performance of the proposed RF is better than the eXtreme Gradient Boosting (XGBoost, another widely used tree-based ensemble method), especially wh
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	Figure 5.2 Study Road Segment 
	  
	Table 5.3 The Comparison of Different Prediction Method 
	MAPE (%) of different observation point with different prediction time range 
	MAPE (%) of different observation point with different prediction time range 
	MAPE (%) of different observation point with different prediction time range 
	MAPE (%) of different observation point with different prediction time range 
	MAPE (%) of different observation point with different prediction time range 



	Models 
	Models 
	Models 
	Models 

	15min 
	15min 

	30min 
	30min 

	45min 
	45min 

	60min 
	60min 


	  
	  
	  

	A 
	A 
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	B 
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	A 
	A 
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	A 
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	B 
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	A 
	A 

	B 
	B 

	C 
	C 


	RF 
	RF 
	RF 

	6.49 
	6.49 

	6.15 
	6.15 

	6.39 
	6.39 
	 

	9.69 
	9.69 

	9.97 
	9.97 

	10.67 
	10.67 

	15.29 
	15.29 

	16.19 
	16.19 

	17.37 
	17.37 

	24.59 
	24.59 

	25.66 
	25.66 

	26.76 
	26.76 
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	XGBoost 
	XGBoost 

	6.57 
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	6.14 
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	6.39 
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	10.58 
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	9.98 
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	10.89 
	10.89 
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	28.09 
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	Figure 5.3 MAPE of Different Observation Point with Different Prediction Time Range 
	 
	5.3. Summary 
	In summary, we presents the validation of the proposed machine learning models based on the sample dataset. For the machine learning prediction model, the data training step will be described to determine the parameters in the model structure.  The relative importance of each variable (selected feature) were ranked in the RF travel time prediction model. The relative importance of the features shows that the travel time one step ahead (15 minutes before) contributes the most (34.85%) to the predicted travel
	importance values in the model than other features. Adding up the most important six variables’ relative importance values (Tt−1, TOD, Speed, Tt−w,  DOW, Weather) in Table 5.2 is as high as 90.90%, which means that these six selected variables include most of the information needed in the travel time prediction. Table 5.2 also shows that the time features (such as Tt−1, TOD, Tt−w,  DOW) have significantly higher relative importance values than the spatial and weather features (such as weather, road ID, leng
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	6.1. Summary 
	Travel time prediction is based on accurate modeling the complex non-linear spatiotemporal traffic dynamics in the real world (Ran et al., 2019). The accuracy and interpretability of models are two major concerns. In general, RF more like a complex black box models for accuracy versus less accurate but more interpretable traditional models such as linear regression. In recent year, the increase congestion on freeways has led the increasing of uncertainty, which made the TTP model more difficult to achieve t
	Travel time prediction is based on accurate modeling the complex non-linear spatiotemporal traffic dynamics in the real world (Ran et al., 2019). The accuracy and interpretability of models are two major concerns. In general, RF more like a complex black box models for accuracy versus less accurate but more interpretable traditional models such as linear regression. In recent year, the increase congestion on freeways has led the increasing of uncertainty, which made the TTP model more difficult to achieve t
	-
	term travel time prediction can be an important planning tool for both individuals and public transportation. In both cases, it is expected that the application of accurate travel time prediction can improve improve the level of service and travel planning by reducing errors between the actual and predicted travel time, which will also reduce the whole cost of travel and deliveries. The tree-based ensemble methods have been widely used in the field of prediction. By combining a simple tree to a forest, RF a
	-
	processing tasks (feature selection, domain values definition) in different methods on their performance was also studied. Sample dataset from I
	-
	485 charlotte was selected to conduct a case study and experiments indicated that RF is the most promising approach among all algorithms tested. The results showed that all ensemble learning methods achieve a high estimation accuracy. 
	 

	Most existing machine learning models can capture the nonlinear pattern of travel time but suffer from over-fitting. Study results indicate that the RF model has its considerable advantages in freeway travel time prediction, and the performance evaluation result also shows that the RF-
	based model can have better predictions in terms of prediction accuracy. RF model showed a reasonable performance compared with other approaches. When the prediction time is no more than 15 mins, the RF algorithm is relatively accurate. However, when the prediction horizon is longer than 30 minutes, the error increases dramatically. Different from other machine learning methods, RF methods provide interpretable results with different types of predictor variables. RF can also handle data with very high dimen
	 
	 

	6.2. Future Research 
	As mentioned, the practice of RF algorithm and other tree-based ensemble methods in travel time prediction area are still very limited. The future focus of the research would be hybrid models (combination model), which can combine several models of the same or different types of prediction models to enhance the model performance and prediction. The RF method can be combined with other tree-based methods or another type of machine learning method in the preprocessing step or prediction step. Experimental res
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